Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 4(5)2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843882

RESUMEN

Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy. We are developing an rhGAA, ATB200 (Amicus proprietary rhGAA), with high levels of mannose-6-phosphate that are required for efficient cellular uptake and lysosomal trafficking. When administered in combination with the pharmacological chaperone AT2221 (miglustat), which stabilizes the enzyme and improves its pharmacokinetic properties, ATB200/AT2221 was substantially more potent than alglucosidase alfa in a mouse model of Pompe disease. The new investigational therapy is more effective at reversing the primary abnormality - intralysosomal glycogen accumulation - in multiple muscles. Furthermore, unlike the current standard of care, ATB200/AT2221 dramatically reduces autophagic buildup, a major secondary defect in the diseased muscles. The reversal of lysosomal and autophagic pathologies leads to improved muscle function. These data demonstrate the superiority of ATB200/AT2221 over the currently approved ERT in the murine model.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , alfa-Glucosidasas/farmacología , alfa-Glucosidasas/uso terapéutico , 1-Desoxinojirimicina/análogos & derivados , Animales , Modelos Animales de Enfermedad , Femenino , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Manosafosfatos/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Ratas , Ratas Sprague-Dawley , alfa-Glucosidasas/sangre , alfa-Glucosidasas/genética
2.
Mol Ther ; 23(7): 1169-1181, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25915924

RESUMEN

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene that encodes α-galactosidase A and is characterized by pathological accumulation of globotriaosylceramide and globotriaosylsphingosine. Earlier, the authors demonstrated that oral coadministration of the pharmacological chaperone AT1001 (migalastat HCl; 1-deoxygalactonojirimycin HCl) prior to intravenous administration of enzyme replacement therapy improved the pharmacological properties of the enzyme. In this study, the authors investigated the effects of coformulating AT1001 with a proprietary recombinant human α-galactosidase A (ATB100) into a single intravenous formulation. AT1001 increased the physical stability and reduced aggregation of ATB100 at neutral pH in vitro, and increased the potency for ATB100-mediated globotriaosylceramide reduction in cultured Fabry fibroblasts. In Fabry mice, AT1001 coformulation increased the total exposure of active enzyme, and increased ATB100 levels in cardiomyocytes, cardiac vascular endothelial cells, renal distal tubular epithelial cells, and glomerular cells, cell types that do not show substantial uptake with enzyme replacement therapy alone. Notably, AT1001 coformulation also leads to greater tissue globotriaosylceramide reduction when compared with ATB100 alone, which was positively correlated with reductions in plasma globotriaosylsphingosine. Collectively, these data indicate that intravenous administration of ATB100 coformulated with AT1001 may provide an improved therapy for Fabry disease and thus warrants further investigation.


Asunto(s)
Enfermedad de Fabry/tratamiento farmacológico , Chaperonas Moleculares/administración & dosificación , Oligopéptidos/administración & dosificación , alfa-Galactosidasa/administración & dosificación , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Terapia de Reemplazo Enzimático , Enfermedad de Fabry/patología , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Mutación , Especificidad por Sustrato
3.
PLoS One ; 9(7): e102092, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036864

RESUMEN

Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.


Asunto(s)
1-Desoxinojirimicina/farmacología , Glucano 1,4-alfa-Glucosidasa/genética , Glucano 1,4-alfa-Glucosidasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Glucógeno/metabolismo , Lisosomas/efectos de los fármacos , Mutación , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/farmacocinética , Administración Oral , Animales , Biocatálisis/efectos de los fármacos , Disponibilidad Biológica , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estabilidad de Enzimas/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucano 1,4-alfa-Glucosidasa/biosíntesis , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos
4.
PLoS One ; 8(3): e57631, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472096

RESUMEN

Fabry disease (FD) results from mutations in the gene (GLA) that encodes the lysosomal enzyme α-galactosidase A (α-Gal A), and involves pathological accumulation of globotriaosylceramide (GL-3) and globotriaosylsphingosine (lyso-Gb3). Migalastat hydrochloride (GR181413A) is a pharmacological chaperone that selectively binds, stabilizes, and increases cellular levels of α-Gal A. Oral administration of migalastat HCl reduces tissue GL-3 in Fabry transgenic mice, and in urine and kidneys of some FD patients. A liquid chromatography-tandem mass spectrometry method was developed to measure lyso-Gb3 in mouse tissues and human plasma. Oral administration of migalastat HCl to transgenic mice reduced elevated lyso-Gb3 levels up to 64%, 59%, and 81% in kidney, heart, and skin, respectively, generally equal to or greater than observed for GL-3. Furthermore, baseline plasma lyso-Gb3 levels were markedly elevated in six male FD patients enrolled in Phase 2 studies. Oral administration of migalastat HCl (150 mg QOD) reduced urine GL-3 and plasma lyso-Gb3 in three subjects (range: 15% to 46% within 48 weeks of treatment). In contrast, three showed no reductions in either substrate. These results suggest that measurement of tissue and/or plasma lyso-Gb3 is feasible and may be warranted in future studies of migalastat HCl or other new potential therapies for FD.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/genética , Glucolípidos/metabolismo , Esfingolípidos/metabolismo , Esfingosina/metabolismo , Trihexosilceramidas/metabolismo , 1-Desoxinojirimicina/farmacología , Administración Oral , Animales , Enfermedad de Fabry/sangre , Enfermedad de Fabry/tratamiento farmacológico , Glucolípidos/sangre , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Reproducibilidad de los Resultados , Esfingolípidos/sangre , Trihexosilceramidas/sangre , alfa-Galactosidasa/genética
5.
PLoS One ; 7(7): e40776, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815812

RESUMEN

Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients.


Asunto(s)
1-Desoxinojirimicina/uso terapéutico , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Glucógeno/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Glucosidasas/metabolismo , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/farmacología , Animales , Tampones (Química) , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Semivida , Humanos , Ratones , Ratones Noqueados , Desnaturalización Proteica/efectos de los fármacos , Ratas , Proteínas Recombinantes/sangre , alfa-Glucosidasas/administración & dosificación , alfa-Glucosidasas/sangre
6.
Mol Ther ; 20(4): 717-26, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22215019

RESUMEN

Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Enfermedad de Fabry/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Proteínas Recombinantes/uso terapéutico , alfa-Galactosidasa/uso terapéutico , Animales , Western Blotting , Enfermedad de Fabry/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratas , Trihexosilceramidas/metabolismo
7.
FEBS J ; 277(7): 1618-38, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20148966

RESUMEN

Gaucher disease is caused by mutations in the gene that encodes the lysosomal enzyme acid beta-glucosidase (GCase). We have shown previously that the small molecule pharmacological chaperone isofagomine (IFG) binds and stabilizes N370S GCase, resulting in increased lysosomal trafficking and cellular activity. In this study, we investigated the effect of IFG on L444P GCase. Incubation of Gaucher patient-derived lymphoblastoid cell lines (LCLs) or fibroblasts with IFG led to approximately 3.5- and 1.3-fold increases in L444P GCase activity, respectively, as measured in cell lysates. The effect in fibroblasts was increased approximately 2-fold using glycoprotein-enrichment, GCase-immunocapture, or by incubating cells overnight in IFG-free media prior to assay, methods designed to maximize GCase activity by reducing IFG carryover and inhibition in the enzymatic assay. IFG incubation also increased the lysosomal trafficking and in situ activity of L444P GCase in intact cells, as measured by reduction in endogenous glucosylceramide levels. Importantly, this reduction was seen only following three-day incubation in IFG-free media, underscoring the importance of IFG removal to restore lysosomal GCase activity. In mice expressing murine L444P GCase, oral administration of IFG resulted in significant increases (2- to 5-fold) in GCase activity in disease-relevant tissues, including brain. Additionally, eight-week IFG administration significantly lowered plasma chitin III and IgG levels, and 24-week administration significantly reduced spleen and liver weights. Taken together, these data suggest that IFG can increase the lysosomal activity of L444P GCase in cells and tissues. Moreover, IFG is orally available and distributes into multiple tissues, including brain, and may thus merit therapeutic evaluation for patients with neuronopathic and non-neuronopathic Gaucher disease.


Asunto(s)
Enfermedad de Gaucher/genética , Iminopiranosas/química , Enfermedades por Almacenamiento Lisosomal/genética , Mutación , beta-Glucosidasa/genética , Animales , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Masculino , Ratones , Microscopía Confocal/métodos , Chaperonas Moleculares/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Mol Ther ; 18(1): 23-33, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19773742

RESUMEN

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency in alpha-galactosidase A (alpha-Gal A) activity and subsequent accumulation of the substrate globotriaosylceramide (GL-3), which contributes to disease pathology. The pharmacological chaperone (PC) DGJ (1-deoxygalactonojirimycin) binds and stabilizes alpha-Gal A, increasing enzyme levels in cultured cells and in vivo. The ability of DGJ to reduce GL-3 in vivo was investigated using transgenic (Tg) mice that express a mutant form of human alpha-Gal A (R301Q) on a knockout background (Tg/KO), which leads to GL-3 accumulation in disease-relevant tissues. Four-week daily oral administration of DGJ to Tg/KO mice resulted in significant and dose-dependent increases in alpha-Gal A activity, with concomitant GL-3 reduction in skin, heart, kidney, brain, and plasma; 24-week administration resulted in even greater reductions. Compared to daily administration, less frequent DGJ administration, including repeated cycles of 4 days with DGJ followed by 3 days without or every other day with DGJ, resulted in even greater GL-3 reductions that were comparable to those obtained with Fabrazyme. Collectively, these data indicate that oral administration of DGJ increases mutant alpha-Gal A activity and reduces GL-3 in disease-relevant tissues in Tg/KO mice, and thus merits further evaluation as a treatment for Fabry disease.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Enfermedad de Fabry/tratamiento farmacológico , Trihexosilceramidas/metabolismo , 1-Desoxinojirimicina/uso terapéutico , Animales , Western Blotting , Modelos Animales de Enfermedad , Enfermedad de Fabry/genética , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , alfa-Galactosidasa/antagonistas & inhibidores , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...