Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 175: 116749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761420

RESUMEN

Hypoxic-ischemic encephalopathy (HIE), resulting from a lack of blood flow and oxygen before or during newborn delivery, is a leading cause of cerebral palsy and neurological disability in children. Therapeutic hypothermia (TH), the current standard of care in HIE, is only beneficial in 1 of 7-8 cases. Therefore, there is a critical need for more efficient treatments. We have previously reported that omega-3 (n-3) fatty acids (FA) carried by triglyceride (TG) lipid emulsions provide neuroprotection after experimental hypoxic-ischemic (HI) injury in neonatal mice. Herein, we propose a novel acute therapeutic approach using an n-3 diglyceride (DG) lipid emulsions. Importantly, n-3 DG preparations had much smaller particle size compared to commercially available or lab-made n-3 TG emulsions. We showed that n-3 DG molecules have the advantage of incorporating at substantially higher levels than n-3 TG into an in vitro model of phospholipid membranes. We also observed that n-3 DG after parenteral administration in neonatal mice reaches the bloodstream more rapidly than n-3 TG. Using neonatal HI brain injury models in mice and rats, we found that n-3 DG emulsions provide superior neuroprotection than n-3 TG emulsions or TH in decreasing brain infarct size. Additionally, we found that n-3 DGs attenuate microgliosis and astrogliosis. Thus, n-3 DG emulsions are a superior, promising, and novel therapy for treating HIE.


Asunto(s)
Animales Recién Nacidos , Emulsiones , Ácidos Grasos Omega-3 , Hipoxia-Isquemia Encefálica , Animales , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología
2.
PLoS One ; 17(8): e0273677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044480

RESUMEN

Hypothermia (HT) is a standard of care in the management of hypoxic-ischemic brain injury (HI). However, therapeutic mechanisms of HT are not well understood. We found that at the temperature of 32°C, isolated brain mitochondria exhibited significantly greater resistance to an opening of calcium-induced permeability transition pore (mPTP), compared to 37°C. Mitochondrial calcium buffering capacity (mCBC) was linearly and inversely dependent upon temperature (25°C-37°C). Importantly, at 37°C cyclosporine A did not increase mCBC, but significantly increased mCBC at lower temperature. Because mPTP contributes to reperfusion injury, we hypothesized that HT protects brain by improvement of mitochondrial tolerance to mPTP activation. Immediately after HI-insult, isolated brain mitochondria demonstrated very poor mCBC. At 30 minutes of reperfusion, in mice recovered under normothermia (NT) or HT, mCBC significantly improved. However, at four hours of reperfusion, only NT mice exhibited secondary decline of mCBC. HT-mice maintained their recovered mCBC and this was associated with significant neuroprotection. Direct inverted dependence of mCBC upon temperature in vitro and significantly increased mitochondrial resistance to mPTP activation after therapeutic HT ex vivo suggest that hypothermia-driven inhibition of calcium-induced mitochondrial mPTP activation mechanistically contributes to the neuroprotection associated with hypothermia.


Asunto(s)
Calcio , Hipotermia , Hipoxia-Isquemia Encefálica , Mitocondrias , Animales , Calcio/metabolismo , Calcio/fisiología , Hipoxia , Hipoxia-Isquemia Encefálica/metabolismo , Isquemia , Ratones , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Neuroprotección , Temperatura
3.
Redox Biol ; 51: 102258, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35189550

RESUMEN

Pathologies associated with tissue ischemia/reperfusion (I/R) in highly metabolizing organs such as the brain and heart are leading causes of death and disability in humans. Molecular mechanisms underlying mitochondrial dysfunction during acute injury in I/R are tissue-specific, but their details are not completely understood. A metabolic shift and accumulation of substrates of reverse electron transfer (RET) such as succinate are observed in tissue ischemia, making mitochondrial complex I of the respiratory chain (NADH:ubiquinone oxidoreductase) the most vulnerable enzyme to the following reperfusion. It has been shown that brain complex I is predisposed to losing its flavin mononucleotide (FMN) cofactor when maintained in the reduced state in conditions of RET both in vitro and in vivo. Here we investigated the process of redox-dependent dissociation of FMN from mitochondrial complex I in brain and heart mitochondria. In contrast to the brain enzyme, cardiac complex I does not lose FMN when reduced in RET conditions. We proposed that the different kinetics of FMN loss during RET is due to the presence of brain-specific long 50 kDa isoform of the NDUFV3 subunit of complex I, which is absent in the heart where only the canonical 10 kDa short isoform is found. Our simulation studies suggest that the long NDUFV3 isoform can reach toward the FMN binding pocket and affect the nucleotide affinity to the apoenzyme. For the first time, we demonstrated a potential functional role of tissue-specific isoforms of complex I, providing the distinct molecular mechanism of I/R-induced mitochondrial impairment in cardiac and cerebral tissues. By combining functional studies of intact complex I and molecular structure simulations, we defined the critical difference between the brain and heart enzyme and suggested insights into the redox-dependent inactivation mechanisms of complex I during I/R injury in both tissues.


Asunto(s)
Complejo I de Transporte de Electrón , Mononucleótido de Flavina , Encéfalo/metabolismo , Dinitrocresoles , Complejo I de Transporte de Electrón/metabolismo , Mononucleótido de Flavina/metabolismo , Corazón , Humanos , Isquemia/metabolismo , Mitocondrias Cardíacas/metabolismo , Oxidación-Reducción
4.
Pediatr Res ; 91(6): 1383-1390, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947998

RESUMEN

BACKGROUND: In the developing brain, the death of immature oligodendrocytes (OLs) has been proposed to explain a developmental window for vulnerability to white matter injury (WMI). However, in neonatal mice, chronic sublethal intermittent hypoxia (IH) recapitulates the phenotype of diffuse WMI without affecting cellular viability. This work determines whether, in neonatal mice, a developmental window of WMI vulnerability exists in the absence of OLs lineage cellular death. METHODS: Neonatal mice were exposed to cell-nonlethal early or late IH stress. The presence or absence of WMI phenotype in their adulthood was defined by the extent of sensorimotor deficit and diffuse cerebral hypomyelination. A separate cohort of mice was examined for markers of cellular degeneration and OLs maturation. RESULTS: Compared to normoxic littermates, only mice exposed to early IH stress demonstrated arrested OLs maturation, diffuse cerebral hypomyelination, and sensorimotor deficit. No cellular death associated with IH was detected. CONCLUSIONS: Neonatal sublethal IH recapitulates the phenotype of diffuse WMI only when IH stress coincides with the developmental stage of primary white matter myelination. This signifies a contribution of cell-nonlethal mechanisms in defining the developmental window of vulnerability to diffuse WMI. IMPACT: The key message of our work is that the developmental window of vulnerability to the WMI driven by intermittent hypoxemia exists even in the absence of excessive OLs and other cells death. This is an important finding because the existence of the developmental window of vulnerability to WMI has been explained by a lethal-selective sensitivity of immature OLs to hypoxic and ischemic stress, which coincided with their differentiation. Thus, our study expands mechanistic explanation of a developmental window of sensitivity to WMI by showing the existence of cell-nonlethal pathways responsible for this biological phenomenon.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Adulto , Animales , Encéfalo , Lesiones Encefálicas/metabolismo , Humanos , Hipoxia/metabolismo , Ratones , Oligodendroglía/metabolismo
5.
J Biol Chem ; 297(4): 101204, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34543622

RESUMEN

Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson's disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min-1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.


Asunto(s)
Encéfalo/enzimología , Complejo I de Transporte de Electrón , Mitocondrias/enzimología , Animales , Complejo I de Transporte de Electrón/análisis , Complejo I de Transporte de Electrón/metabolismo , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Complejo Cetoglutarato Deshidrogenasa/análisis , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ratones
6.
Cells ; 10(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807810

RESUMEN

This review discusses the potential mechanistic role of abnormally elevated mitochondrial proton leak and mitochondrial bioenergetic dysfunction in the pathogenesis of neonatal brain and lung injuries associated with premature birth. Providing supporting evidence, we hypothesized that mitochondrial dysfunction contributes to postnatal alveolar developmental arrest in bronchopulmonary dysplasia (BPD) and cerebral myelination failure in diffuse white matter injury (WMI). This review also analyzes data on mitochondrial dysfunction triggered by activation of mitochondrial permeability transition pore(s) (mPTP) during the evolution of perinatal hypoxic-ischemic encephalopathy. While the still cryptic molecular identity of mPTP continues to be a subject for extensive basic science research efforts, the translational significance of mitochondrial proton leak received less scientific attention, especially in diseases of the developing organs. This review is focused on the potential mechanistic relevance of mPTP and mitochondrial dysfunction to neonatal diseases driven by developmental failure of organ maturation or by acute ischemia-reperfusion insult during development.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Lesión Pulmonar/fisiopatología , Mitocondrias/metabolismo , Humanos , Recién Nacido , Mitocondrias/patología , Permeabilidad
7.
Exp Neurol ; 335: 113495, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038416

RESUMEN

Mitochondria-related cell death pathways play a major role in ischemic brain injury. Thus, mitochondrial "protective" molecules could be considered for new therapeutic regimens. We recently reported that acute administration of docosahexaenoic acid (DHA) triglyceride lipid emulsion, immediately after hypoxic-ischemic (HI) insult, markedly attenuated brain infarct size. This was associated with an early change of DHA-derived specialized pro-resolving mediator (SPM) profiles. Specifically, DHA treatment induced a 50% increase of neuroprotectin D1 (NPD1) levels in ischemic brain. Based on these findings, we questioned if direct administration of NPD1 after HI injury also affords neuroprotection, and if so, by what mechanisms. Using HI insult to mimic ischemic stroke in neonatal mice, we observed that acute intraperitoneal injection of NPD1 immediately after HI injury prevented the expansion of the ischemic core by ~40% and improved coordination and motor abilities compared to the control group. At 7 days after HI injury, NPD1 treatment decreased ipsilateral hemisphere atrophy and preserved motor functions in wire-holding and bridge-crossing tests compared to control littermates. Brain mitochondria, isolated at 4 h after reperfusion from mice treated with NPD1, showed an increase in the capacity to buffer calcium after HI injury, as result of the preservation of mitochondrial membranes. Further, NPD1 induced a reduction of mitochondrial BAX translocation and oligomerization, attenuated cytochrome C release and decreased AIF nuclear translocation. To confirm whether NPD1 acts as BAX inhibitor, we evaluated NPD1 action co-administrated with a pro-apoptotic agent, staurosporine, using mouse embryonic fibroblasts as in vitro model of apoptosis. NPD1 exposure markedly decreased mitochondria-mediated apoptosis, blocking BAX translocation from cytosol to mitochondria and subsequently reducing caspase-3 activation. Our findings provide novel evidence that the neuroprotective action of NPD1 is elicited rapidly in the first few hours after ischemic injury and is associated with both preserved mitochondrial membrane structure and reduced BAX mitochondrial translocation and activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Isquemia Encefálica/prevención & control , Ácidos Docosahexaenoicos/farmacología , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Animales Recién Nacidos , Atrofia , Encéfalo/patología , Infarto Encefálico/inducido químicamente , Infarto Encefálico/tratamiento farmacológico , Ácidos Docosahexaenoicos/uso terapéutico , Accidente Cerebrovascular Isquémico/inducido químicamente , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Desempeño Psicomotor/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/metabolismo
8.
Cell Death Discov ; 6(1): 132, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33298902

RESUMEN

We have previously identified a shift from TNF-α-induced apoptosis to necroptosis that occurs under hyperglycemic conditions. This shift involves the downregulation or silencing of caspases and concurrent upregulation of necroptotic proteins leading to activation of the necrosome. In addition, under hyperglycemic conditions in vivo, this shift in cell death mechanisms exacerbates neonatal hypoxia-ischemia (HI) brain injury. Here, we identify two major factors that drive the hyperglycemic shift to necroptosis: (1) reactive oxygen species (ROS) and (2) receptor-interacting protein kinase 1 (RIP1). ROS, including mitochondrial superoxide, led to the oxidation of RIP1, as well as formation and activation of the necrosome. Concurrently, ROS mediate a decrease in the levels and activation of executioner caspases-3, -6, and -7. Importantly, hyperglycemia and mitochondrial ROS result in the oxidation of RIP1 and loss of executioner caspases prior to death receptor engagement by TNF-α. Moreover, RIP1 partially controlled levels of mitochondrial ROS in the context of hyperglycemia. As a result of its regulation of ROS, RIP1 also regulated necrosome activation and caspase loss. Mitochondrial ROS exacerbated neonatal HI-brain injury in hyperglycemic mice, as a result of the shift from apoptosis to necroptosis.

9.
J Clin Invest ; 130(10): 5536-5550, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32925170

RESUMEN

Postnatal failure of oligodendrocyte maturation has been proposed as a cellular mechanism of diffuse white matter injury (WMI) in premature infants. However, the molecular mechanisms for oligodendrocyte maturational failure remain unclear. In neonatal mice and cultured differentiating oligodendrocytes, sublethal intermittent hypoxic (IH) stress activated cyclophilin D-dependent mitochondrial proton leak and uncoupled mitochondrial respiration, leading to transient bioenergetic stress. This was associated with development of diffuse WMI: poor oligodendrocyte maturation, diffuse axonal hypomyelination, and permanent sensorimotor deficit. In normoxic mice and oligodendrocytes, exposure to a mitochondrial uncoupler recapitulated the phenotype of WMI, supporting the detrimental role of mitochondrial uncoupling in the pathogenesis of WMI. Compared with WT mice, cyclophilin D-knockout littermates did not develop bioenergetic stress in response to IH challenge and fully preserved oligodendrocyte maturation, axonal myelination, and neurofunction. Our study identified the cyclophilin D-dependent mitochondrial proton leak and uncoupling as a potentially novel subcellular mechanism for the maturational failure of oligodendrocytes and offers a potential therapeutic target for prevention of diffuse WMI in premature infants experiencing chronic IH stress.


Asunto(s)
Lesiones Encefálicas/congénito , Oligodendroglía/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Sustancia Blanca/lesiones , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Diferenciación Celular , Células Cultivadas , Peptidil-Prolil Isomerasa F/deficiencia , Peptidil-Prolil Isomerasa F/genética , Modelos Animales de Enfermedad , Metabolismo Energético , Femenino , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Técnicas In Vitro , Recién Nacido , Recien Nacido Prematuro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Vaina de Mielina/fisiología , Oligodendroglía/patología , Desacopladores/farmacología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
10.
Antioxid Redox Signal ; 31(9): 608-622, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31037949

RESUMEN

Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 608-622.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Flavinas/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Daño por Reperfusión/metabolismo , Animales , Animales Recién Nacidos , Complejo I de Transporte de Electrón/química , Mononucleótido de Flavina/metabolismo , Flavinas/química , Peróxido de Hidrógeno/metabolismo , Hipoxia-Isquemia Encefálica/etiología , Ratones , Estrés Oxidativo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Relación Estructura-Actividad
11.
Free Radic Biol Med ; 124: 517-524, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30037775

RESUMEN

BACKGROUND: Establishing sustained reoxygenation/reperfusion ensures not only the recovery, but may initiate a reperfusion injury in which oxidative stress plays a major role. This study offers the mechanism and this mechanism-specific therapeutic strategy against excessive release of reactive oxygen species (ROS) associated with reperfusion-driven recovery of mitochondrial metabolism. AIMS AND METHODS: In neonatal mice subjected to cerebral hypoxia-ischaemia (HI) and reperfusion, we examined conformational changes and activity of mitochondrial complex I with and without post-HI administration of S-nitrosating agent, MitoSNO. Assessment of mitochondrial ROS production, oxidative brain damage, neuropathological and neurofunctional outcomes were used to define neuroprotective strength of MitoSNO. A specificity of reperfusion-driven mitochondrial ROS production to conformational changes in complex I was examined in-vitro. RESULTS: HI deactivated complex I, changing its conformation from active form (A) into the catalytically dormant, de-active form (D). Reperfusion rapidly converted the D-form into the A-form and increased ROS generation. Administration of MitoSNO at the onset of reperfusion, decelerated D→A transition of complex I, attenuated oxidative stress, and significantly improved neurological recovery. In cultured neurons, after simulated ischaemia-reperfusion injury, MitoSNO significantly reduced ROS generation and neuronal mortality. In isolated mitochondria subjected to anoxia-reoxygenation, MitoSNO restricted ROS release during D→A transitions. CONCLUSION: Rapid D→A conformation in response to reperfusion reactivates complex I. This is essential not only for metabolic recovery, but also contributes to excessive release of mitochondrial ROS and reperfusion injury. We propose that the initiation of reperfusion should be followed by pharmacologically-controlled gradual reactivation of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/metabolismo , Animales , Animales Recién Nacidos , Ratones , Ratones Endogámicos C57BL , Nitrosación/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Cell Death Discov ; 4: 55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760953

RESUMEN

Apoptosis and necroptosis are the primary modes of eukaryotic cell death, with apoptosis being non-inflammatory while necroptosis is highly inflammatory. We previously demonstrated that, once activated, necroptosis is enhanced by hyperglycemia in several cell types. Here, we determine if hyperglycemia affects apoptosis similarly. We show that hyperglycemia does not enhance extrinsic apoptosis but potentiates a shift to RIP1-dependent necroptosis. This is due to increased levels and activity of RIP1, RIP3, and MLKL, as well as decreased levels and activity of executioner caspases under hyperglycemic conditions following stimulation of apoptosis. Cell death under hyperglycemic conditions was classified as necroptosis via measurement of markers and involvement of RIP1, RIP3, and MLKL. The shift to necroptosis was driven by RIP1, as mutation of this gene using CRISPR-Cas9 caused cell death to revert to apoptosis under hyperglycemic conditions. The shift of apoptosis to necroptosis depended on glycolysis and production of mitochondrial ROS. Importantly, the shift in PCD was observed in primary human T cells. Levels of RIP1 and MLKL increased, while executioner caspases and PARP1 cleavage decreased, in cerebral tissue from hyperglycemic neonatal mice that underwent hypoxia-ischemia (HI) brain injury, suggesting that this cell death shift occurs in vivo. This is significant as it demonstrates a shift from non-inflammatory to inflammatory cell death which may explain the exacerbation of neonatal HI-brain injury during hyperglycemia. These results are distinct from our previous findings where hyperglycemia enhanced necroptosis under conditions where apoptosis was inhibited artificially. Here we demonstrate a shift from apoptosis to necroptosis under hyperglycemic conditions while both pathways are fully active. Therefore, while our previous work documented that intensity of necroptosis is responsive to glucose, this work sheds light on the molecular balance between apoptosis and necroptosis and identifies hyperglycemia as a condition that pushes cells to undergo necroptosis despite the initial activation of apoptosis.

13.
Pediatr Res ; 83(2): 491-497, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29211056

RESUMEN

BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.


Asunto(s)
Ciclo del Ácido Cítrico , Hipoxia-Isquemia Encefálica/patología , Oxígeno/metabolismo , Ácido Succínico/metabolismo , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Electrones , Peróxido de Hidrógeno/metabolismo , Hipoxia , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , NAD/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo
14.
PLoS One ; 11(8): e0160870, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27513579

RESUMEN

BACKGROUND AND PURPOSE: Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. METHODS: 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4-5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8-9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. RESULTS: Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. CONCLUSIONS: Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA.


Asunto(s)
Ácidos Docosahexaenoicos/uso terapéutico , Ácido Eicosapentaenoico/uso terapéutico , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Calcio/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Emulsiones , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
15.
J Biol Chem ; 291(26): 13753-61, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129772

RESUMEN

Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD.


Asunto(s)
Eritrocitos/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Hiperglucemia/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Muerte Celular , Modelos Animales de Enfermedad , Eritrocitos/patología , Proteínas Activadoras de GTPasa/genética , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hiperglucemia/genética , Hiperglucemia/patología , Células Jurkat , Ratones , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Unión al ARN/genética , Células U937
16.
PLoS One ; 10(3): e0120456, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25799166

RESUMEN

This study demonstrates that in mice subjected to hypoxia-ischemia (HI) brain injury isoflurane anesthesia initiated upon reperfusion limits a release of mitochondrial oxidative radicals by inhibiting a recovery of complex-I dependent mitochondrial respiration. This significantly attenuates an oxidative stress and reduces the extent of HI brain injury. Neonatal mice were subjected to HI, and at the initiation of reperfusion were exposed to isoflurane with or without mechanical ventilation. At the end of HI and isoflurane exposure cerebral mitochondrial respiration, H2O2 emission rates were measured followed by an assessment of cerebral oxidative damage and infarct volumes. At 8 weeks after HI navigational memory and brain atrophy were assessed. In vitro, direct effect of isoflurane on mitochondrial H2O2 emission was compared to that of complex-I inhibitor, rotenone. Compared to controls, 15 minutes of isoflurane anesthesia inhibited recovery of the compex I-dependent mitochondrial respiration and decreased H2O2 production in mitochondria supported with succinate. This was associated with reduced oxidative brain injury, superior navigational memory and decreased cerebral atrophy compared to the vehicle-treated HI-mice. Extended isoflurane anesthesia was associated with sluggish recovery of cerebral blood flow (CBF) and the neuroprotection was lost. However, when isoflurane anesthesia was supported with mechanical ventilation the CBF recovery improved, the event associated with further reduction of infarct volume compared to HI-mice exposed to isoflurane without respiratory support. Thus, in neonatal mice brief isoflurane anesthesia initiated at the onset of reperfusion limits mitochondrial release of oxidative radicals and attenuates an oxidative stress. This novel mechanism contributes to neuroprotective action of isoflurane. The use of mechanical ventilation during isoflurane anesthesia counterbalances negative effect of isoflurane anesthesia on recovery of cerebral circulation which potentiates protection against reperfusion injury.


Asunto(s)
Hipoxia-Isquemia Encefálica/metabolismo , Isoflurano/farmacología , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/metabolismo , Reperfusión , Anestésicos por Inhalación , Animales , Análisis de los Gases de la Sangre , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Hipoxia-Isquemia Encefálica/sangre , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Isoflurano/administración & dosificación , Ratones , Mitocondrias/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/sangre , Daño por Reperfusión/tratamiento farmacológico , Respiración Artificial
17.
Exp Neurol ; 264: 33-42, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25476492

RESUMEN

Very low birth weight (VLBW) premature infants experience numerous, often self-limited non-bradycardic episodes of intermittent hypoxemia (IH). We hypothesized that these episodes of IH affect postnatal white matter (WM) development causing hypomyelination and neurological handicap in the absence of cellular degeneration. Based on clinical data from ten VLBW neonates; a severity, daily duration and frequency of non-bradycardic IH episodes were reproduced in neonatal mice. Changes in heart rate and cerebral blood flow during IH were recorded. A short-term and long-term neurofunctional performance, cerebral content of myelin basic protein (MBP), 2'3' cyclic-nucleotide 3-phosphodiesterase (CNPase), electron microscopy of axonal myelination and the extent of cellular degeneration were examined. Neonatal mice exposed to IH exhibited no signs of cellular degeneration, yet demonstrated significantly poorer olfactory discrimination, wire holding, beam and bridge crossing, and walking-initiation tests performance compared to controls. In adulthood, IH-mice demonstrated no alteration in navigational memory. However, sensorimotor performance on rota-rod, wire-holding and beam tests was significantly worse compared to naive littermates. Both short- and long-term neurofunctional deficits were coupled with decreased MBP, CNPase content and poorer axonal myelination compared to controls. In neonatal mice mild, non-ischemic IH stress, mimicking that in VLBW preterm infants, replicates a key phenotype of non-cystic WM injury: permanent hypomyelination and sensorimotor deficits. Because this phenotype has developed in the absence of cellular degeneration, our data suggest that cellular mechanisms of WM injury induced by mild IH differ from that of cystic periventricular leukomalacia where the loss of myelin-producing cells and axons is the major mechanism of injury.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Hipoxia/complicaciones , Leucoencefalopatías/etiología , Enfermedades del Sistema Nervioso/etiología , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Animales Recién Nacidos , Caspasa 3/metabolismo , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Hipoxia/terapia , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular/fisiología , Proteína Básica de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/ultraestructura , Oxígeno/administración & dosificación , Desempeño Psicomotor/fisiología , Estadísticas no Paramétricas , Factores de Tiempo
18.
Am J Respir Cell Mol Biol ; 49(6): 943-50, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23980609

RESUMEN

Hyperoxia inhibits pulmonary bioenergetics, causing delayed alveolarization in mice. We hypothesized that mechanical ventilation (MV) also causes a failure of bioenergetics to support alveolarization. To test this hypothesis, neonatal mice were ventilated with room air for 8 hours (prolonged) or for 2 hours (brief) with 15 µl/g (aggressive) tidal volume (Tv), or for 8 hours with 8 µl/g (gentle) Tv. After 24 hours or 10 days of recovery, lung mitochondria were examined for adenosine diphosphate (ADP)-phosphorylating respiration, using complex I (C-I)-dependent, complex II (C-II)-dependent, or cytochrome C oxidase (C-IV)-dependent substrates, ATP production rate, and the activity of C-I and C-II. A separate cohort of mice was exposed to 2,4-dinitrophenol (DNP), a known uncoupler of oxidative phosphorylation. At 10 days of recovery, pulmonary alveolarization and the expression of vascular endothelial growth factor (VEGF) were assessed. Sham-operated littermates were used as control mice. At 24 hours after aggressive MV, mitochondrial ATP production rates and the activity of C-I and C-II were significantly decreased compared with control mice. However, at 10 days of recovery, only mice exposed to prolonged-aggressive MV continued to exhibit significantly depressed mitochondrial respiration. This was associated with significantly poorer alveolarization and VEGF expression. In contrast, mice exposed to brief-aggressive or prolonged-gentle MV exhibited restored mitochondrial ADP-phosphorylation, normal alveolarization and pulmonary VEGF content. Exposure to DNP fully replicated the phenotype consistent with alveolar developmental arrest. Our data suggest that the failure of bioenergetics to support normal lung development caused by aggressive and prolonged ventilation should be considered a fundamental mechanism for the development of bronchopulmonary dysplasia in premature neonates.


Asunto(s)
Pulmón/metabolismo , Respiración Artificial/efectos adversos , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Recién Nacido , Recien Nacido Prematuro , Pulmón/crecimiento & desarrollo , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
PLoS One ; 8(4): e62448, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23614049

RESUMEN

Nelfinavir (NLF), an antiretroviral agent, preserves mitochondrial membranes integrity and protects mature brain against ischemic injury in rodents. Our study demonstrates that in neonatal mice NLF significantly limits mitochondrial calcium influx, the event associated with protection of the brain against hypoxic-ischemic insult (HI). Compared to the vehicle-treated mice, cerebral mitochondria from NLF-treated mice exhibited a significantly greater tolerance to the Ca(2+)-induced membrane permeabilization, greater ADP-phosphorylating activity and reduced cytochrome C release during reperfusion. Pre-treatment with NLF or Ruthenium red (RuR) significantly improved viability of murine hippocampal HT-22 cells, reduced Ca(2+) content and preserved membrane potential (Ψm) in mitochondria following oxygen-glucose deprivation (OGD). Following histamine-stimulated Ca(2+) release from endoplasmic reticulum, in contrast to the vehicle-treated cells, the cells treated with NLF or RuR also demonstrated reduced Ca(2+) content in their mitochondria, the event associated with preserved Ψm. Because RuR inhibits mitochondrial Ca(2+) uniporter, we tested whether the NLF acts via the mechanism similar to the RuR. However, in contrast to the RuR, in the experiment with direct interaction of these agents with mitochondria isolated from naïve mice, the NLF did not alter mitochondrial Ca(2+) influx, and did not prevent Ca(2+) induced collapse of the Ψm. These data strongly argues against interaction of NLF and mitochondrial Ca(2+) uniporter. Although the exact mechanism remains unclear, our study is the first to show that NLF inhibits intramitochondrial Ca(2+) flux and protects developing brain against HI-reperfusion injury. This novel action of NLF has important clinical implication, because it targets a fundamental mechanism of post-ischemic cell death: intramitochondrial Ca(2+) overload → mitochondrial membrane permeabilization → secondary energy failure.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/patología , Calcio/metabolismo , Hipoxia-Isquemia Encefálica/prevención & control , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nelfinavir/farmacología , Animales , Animales Recién Nacidos , Canales de Calcio/metabolismo , Citocromos c/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación/efectos de los fármacos , Daño por Reperfusión/prevención & control , Rojo de Rutenio/farmacología
20.
PLoS One ; 7(6): e38664, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761695

RESUMEN

BACKGROUND AND PURPOSE: The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points. METHODS: To evaluate the effect of C3a-receptor antagonism on post-ischemic neurogenesis and neurological outcome in the subacute period of stroke, transient focal cerebral ischemia was induced in adult male C57BL/6 mice treated with multiple regimens of a C3a receptor antagonist (C3aRA). RESULTS: Low-dose C3aRA administration during the acute phase of stroke promotes neuroblast proliferation in the subventricular zone at 7 days. Additionally, the C3a receptor is expressed on T-lymphocytes within the ischemic territory at 7 days, and this cellular infiltrate is abrogated by C3aRA administration. Finally, C3aRA treatment confers robust histologic and functional neuroprotection at this delayed time-point. CONCLUSIONS: Targeted complement inhibition through low-dose antagonism of the C3a receptor promotes post-ischemic neuroblast proliferation in the SVZ. Furthermore, C3aRA administration suppresses T-lymphocyte infiltration and improves delayed functional and histologic outcome following reperfused stroke. Post-ischemic complement activation may be pharmacologically manipulated to yield an effective therapy for stroke.


Asunto(s)
Antiinflamatorios/farmacología , Complemento C3a/antagonistas & inhibidores , Inflamación/prevención & control , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de Complemento/antagonistas & inhibidores , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Complemento C3a/metabolismo , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Receptores de Complemento/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/mortalidad , Daño por Reperfusión/prevención & control , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/mortalidad , Tasa de Supervivencia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...