Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 530(16): 2868-2880, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35811330

RESUMEN

Inferior olivary (IO) neurons are born in the dorsal hindbrain and migrate tangentially toward the ventral midline. During their dorsoventral migration, IO neurons extend long leading processes that cross the midline, transform into axons, and project into the contralateral cerebellum. In absence of the axon guidance receptor Robo3, IO axons fail to cross the midline and project to the ipsilateral cerebellum. Remarkably, the IO cell bodies still reach the midline where they form a nucleus of abnormal cytoarchitecture. The mechanisms underlying the migration of Robo3-deficient IO neurons are unknown. Here, we used three-dimensional imaging and transgenic mice to label subsets of IO neurons and study their migratory behavior in Robo3 knockout. We show that IO migration is delayed in absence of Robo3. Strikingly, Robo3-deficient IO neurons progress toward the midline in a direction opposite to their axons. This occurs through a change of polarity and the generation of a second leading process at the rear of the cell. These results suggest that Robo3 receptor controls the establishment of neuronal polarity and the coupling of axonogenesis and cell body migration in IO neurons.


Asunto(s)
Orientación del Axón , Proteínas del Tejido Nervioso , Animales , Axones/metabolismo , Movimiento Celular/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/metabolismo , Núcleo Olivar/metabolismo
2.
Cell Rep ; 34(13): 108904, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789110

RESUMEN

GABAergic interneurons migrate long distances through stereotyped migration programs toward specific laminar positions. During their migration, GABAergic interneurons are morphologically alike but then differentiate into a rich array of interneuron subtypes critical for brain function. How interneuron subtypes acquire their final phenotypic traits remains largely unknown. Here, we show that cerebellar molecular layer GABAergic interneurons, derived from the same progenitor pool, use separate migration paths to reach their laminar position and differentiate into distinct basket cell (BC) and stellate cell (SC) GABAergic interneuron subtypes. Using two-photon live imaging, we find that SC final laminar position requires an extra step of tangential migration supported by a subpopulation of glutamatergic granule cells (GCs). Conditional depletion of GCs affects SC differentiation but does not affect BCs. Our results reveal how timely feedforward control of inhibitory interneuron migration path regulates their terminal differentiation and, thus, establishment of the local inhibitory circuit assembly.


Asunto(s)
Diferenciación Celular , Gránulos Citoplasmáticos/metabolismo , Interneuronas/citología , Animales , Axones/metabolismo , Movimiento Celular , Neuronas GABAérgicas/citología , Interneuronas/metabolismo , Ratones Transgénicos
3.
Neuroscience ; 462: 56-69, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31982466

RESUMEN

In the last 50 years, our vision of the cerebellum has vastly evolved starting with Voogd's (1967) description of extracerebellar projections' terminations and how the projection maps transformed the presumptive homogeneity of the cerebellar cortex into a more complex center subdivided into transverse and longitudinal distinct functional zones. The picture became still more complex with Richard Hawkes and colleagues' (Gravel et al., 1987) discovery of the biochemical heterogeneity of Purkinje cells (PCs), by screening their molecular identities with monoclonal antibodies. Antigens were expressed in a parasagittal pattern with subsets of PCs either possessing or lacking the respective antigens, which divided the cerebellar cortex into precise longitudinal compartments that are congruent with the projection maps. The correlation of these two maps in adult cerebellum shows a perfect matching of developmental mechanisms. This review discusses a series of arguments in favor of the essential role played by PCs in organizing the microzonation of the cerebellum during development (the "matching" hypothesis).


Asunto(s)
Cerebelo , Células de Purkinje , Anticuerpos Monoclonales , Antígenos , Corteza Cerebelosa
4.
Anat Rec (Hoboken) ; 303(5): 1252-1279, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32323495

RESUMEN

Why did I choose this particular topic for my lecture rather than the history of neuroscience or the history of the neuron? Simply because I believe that every disciple has the obligation to pay homage to their mentors once in their lifetime. My formation as a neuroscientist involved three such mentors spanned across three countries. The first was Spain, where I was born, completed my medical studies, and had my first glimpse of neuroscience at the Cajal Institute with Fernando de Castro. It was him who, in 1961, advised me to spend some time abroad, and to that purpose he obtained me a scholarship from the French government, that allowed me to settle in Paris. Once in France I had the good fortune to meet Prof. René Couteaux, another generous mentor, who took care of my stay in the country. Two years later, he made me a proposition to which I could only answer in the affirmative by offering me a research position in France. I got married (the best thing that happened in my life), and spent the next 57 years working on the cerebellum. The third person I want to honor and remember in this presentation is Sanford Louis Palay who was my postdoc professor during the 2 years I worked at Harvard Medical School in Boston. And as it turns out, all three of my mentors have made positive contributions to the history of the synapse. So, without further delay, let us dive in. Anat Rec, 303:1252-1279, 2020. © 2020 American Association for Anatomy.


Asunto(s)
Encéfalo/fisiología , Neurociencias/historia , Sinapsis/fisiología , Animales , Historia del Siglo XX , Humanos , Neuroglía/fisiología , Neuronas/fisiología
5.
Cerebellum ; 15(6): 789-828, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26439486

RESUMEN

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Asunto(s)
Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Animales , Cerebelo/citología , Cerebelo/fisiopatología , Consenso , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
6.
Cerebellum ; 14(5): 534-56, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25599913

RESUMEN

During the past 25 years, our knowledge on the development of basket and stellate cells (molecular layer interneurons [MLIs]) has completely changed, not only regarding their origin from the ventricular zone, corresponding to the primitive cerebellar neuroepithelium, instead of the external granular layer, but above all by providing an almost complete account of the genetic regulations (transcription factors and other genes) involved in their differentiation and synaptogenesis. Moreover, it has been shown that MLIs' precursors (dividing neuroblasts) and not young postmitotic neurons, as in other germinal neuroepithelia, leave the germinative zone and migrate all along a complex and lengthy path throughout the presumptive cerebellar white matter, which provides suitable niches exerting epigenetic influences on their ultimate neuronal identities. Recent studies carried out on the anatomical-functional properties of adult MLIs emphasize the importance of these interneurons in regulating PC inhibition, and point out the crucial role played by electrical synaptic transmission between MLIs as well as ephaptic interactions between them and Purkinje cells at the pinceaux level, in the regulation of this inhibition.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Interneuronas/fisiología , Sinapsis/fisiología , Animales , Humanos
7.
J Neurosci ; 33(22): 9546-62, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719821

RESUMEN

Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.


Asunto(s)
Fibras Nerviosas/fisiología , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/fisiología , Células de Purkinje/fisiología , Animales , Axones/fisiología , Axones/ultraestructura , Conducta Animal/fisiología , Recuento de Células , Diferenciación Celular/genética , Diferenciación Celular/fisiología , ADN/genética , Factores de Transcripción Forkhead/genética , Vectores Genéticos , Humanos , Inmunohistoquímica , Relaciones Interpersonales , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Fuerza Muscular/genética , Fuerza Muscular/fisiología , Mutación/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Reacción en Cadena de la Polimerasa , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Proteínas Represoras/genética , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
8.
PLoS One ; 7(11): e49015, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23155445

RESUMEN

Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Hedgehog/metabolismo , Oligodendroglía/citología , Células de Purkinje/citología , Vitronectina/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Cerebelo/citología , Cerebelo/metabolismo , Regulación hacia Abajo , Ratones , Ratones Transgénicos , Oligodendroglía/metabolismo , Células de Purkinje/metabolismo , Regulación hacia Arriba
9.
Proc Natl Acad Sci U S A ; 109(35): 14206-11, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891348

RESUMEN

Neurons in the CNS of higher vertebrates lose their ability to regenerate their axons at a stage of development that coincides with peak circulating thyroid hormone (T(3)) levels. Here, we examined whether this peak in T(3) is involved in the loss of axonal regenerative capacity in Purkinje cells (PCs). This event occurs at the end of the first postnatal week in mice. Using organotypic culture, we found that the loss of axon regenerative capacity was triggered prematurely by early exposure of mouse PCs to T(3), whereas it was delayed in the absence of T(3). Analysis of mutant mice showed that this effect was mainly mediated by the T(3) receptor α1. Using gain- and loss-of-function approaches, we also showed that Krüppel-like factor 9 was a key mediator of this effect of T(3). These results indicate that the sudden physiological increase in T(3) during development is involved in the onset of the loss of axon regenerative capacity in PCs. This loss of regenerative capacity might be part of the general program triggered by T(3) throughout the body, which adapts the animal to its postnatal environment.


Asunto(s)
Cerebelo/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Regeneración Nerviosa/fisiología , Células de Purkinje/fisiología , Triyodotironina/metabolismo , Adaptación Fisiológica/fisiología , Animales , Axones/fisiología , Axotomía , Cerebelo/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Noqueados , Regeneración Nerviosa/efectos de los fármacos , Técnicas de Cultivo de Órganos , Embarazo , Células de Purkinje/efectos de los fármacos , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/farmacología
10.
Glia ; 59(12): 1946-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21901755

RESUMEN

While the origin of oligodendroglia in the prosencephalon and spinal cord has been extensively studied and accurately described, the origin of this cell type in the cerebellum is largely unknown. To investigate where cerebellar oligodendrocytes generate and which migratory pathways they follow to reach their final destination in the adult, in ovo transplants were performed using the quail/chick chimeric system. The chimeric embryos were developed up to HH43-49 (17-19 days of incubation) to map the location of donor cells and analyze their phenotype by immunohistochemistry. As a result, mesencephalic homotopic and homochronic transplants generated cellular migratory streams moving from the grafted epithelium into the host cerebellum, crossing the isthmus mainly through the velum medullare and invading the central white matter. From here, these mesencephalic cells invaded all the layers of the cerebellar cortex except the granular layer. The majority of the cells were detected in the central and folial white matter, as well as in superficial regions of the internal granular layer, surrounding the Purkinje cells. In the latter case, the donor cells presented a Bergmann glial morphology and were Vimentin positive, while in other areas they were PLP and Olig2-positive, indicating an oligodendroglial fate. The combinatory analysis of the different grafts allowed us to propose the fate map of chick cerebellar oligodendroglia at the neural tube stage. As a result, the majority of the cerebellar oligodendrocytes originate from the parabasal plate of the mesencephalon.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Corteza Cerebelosa/citología , Mesencéfalo/citología , Oligodendroglía/citología , Células Madre/citología , Animales , Corteza Cerebelosa/embriología , Embrión de Pollo , Pollos , Coturnix , Mesencéfalo/embriología , Oligodendroglía/fisiología , Quimera por Radiación , Células Madre/fisiología
11.
Front Neuroanat ; 5: 44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811442
12.
Brain Res Rev ; 66(1-2): 16-34, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20621648

RESUMEN

Camillo Golgi and Santiago Ramón y Cajal were the two main investigators that revealed the morphological organization of the cerebellar cortex, although they never shared the same basic concepts. While for Golgi all axons fused into a large syncytium (the diffuse nerve network), for Cajal they had free endings and communication between neurons was done by contiguity not by continuity. The classical diagrammatic representation of the cerebellar circuitry shown by Cajal in his Croonian lecture (1894), although still valid, has drastically change by the accumulation of the great amount of data generated from 1894 to our days. The topic of this review is to briefly summarize this new knowledge, and to confront it with Cajal's concepts, to determine whether or not the added complexity to the circuit invalidates the Cajal's principles. Our conclusion is that although most of these principles are consolidated, the applicability of the law of dynamic polarization does not adapt to some of them.


Asunto(s)
Corteza Cerebelosa/anatomía & histología , Neuronas/citología , Animales , Corteza Cerebelosa/fisiología , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Red Nerviosa/citología , Vías Nerviosas/citología , Neuronas/fisiología
14.
PLoS Genet ; 5(12): e1000784, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20041218

RESUMEN

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G<-->A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.


Asunto(s)
Mutación Missense/genética , Células de Purkinje/enzimología , Células de Purkinje/patología , Ubiquitina-Proteína Ligasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , Dendritas/enzimología , Dendritas/ultraestructura , Regulación de la Expresión Génica , Sitios Genéticos/genética , Genotipo , Longevidad , Ratones , Ratones Mutantes Neurológicos , Datos de Secuencia Molecular , Fenotipo , Células de Purkinje/ultraestructura , Ubiquitina-Proteína Ligasas/química
15.
Cerebellum ; 7(4): 517-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18972180

RESUMEN

The modern age in the study of the cerebellum started 120 years ago when Cajal published his first paper with Golgi-impregnated material. In this publication, he selected the cerebellum to initiate his gigantic work aimed at unraveling the complexity of the CNS organization. It was not by chance that he selected the cerebellum but because of the occurrence of specific types of fibers, particularly climbing and mossy afferents and basket fibers. The peculiarity of these fibers offered Cajal one of the clearest situations to envision his "neuron doctrine", which proposes that between the nerve cell processes there is no continuity, only contiguity. In 4 years of intense investigation, Cajal was able to untangle the whole cerebellar circuit, providing the roots of our present knowledge on cerebellar organization. This knowledge has greatly expanded in the last 40 years mainly because the application of new techniques, such as electron microscopy, axonal connection tracing techniques based upon axoplasmic transports, and especially modern immunohistochemical and in situ hybridization techniques allowing the correlation of the chemical constituents of the cells with their structural counterparts, as a valuable approach to better appraise function and organization of the cerebellum. These post-Cajal discoveries are briefly discussed to conclude that, even though we are still far from a complete understanding of its function, new important concepts have been developed, for instance that through its connections with the prefrontal cortex, the cerebellum does not only contribute to the planning and execution of the movement, but that has access also to higher cognitive functions.


Asunto(s)
Cerebelo/fisiología , Anatomía/historia , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/fisiología , Cerebelo/anatomía & histología , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Neuronas/fisiología , Fisiología/historia
16.
J Neurosci ; 28(25): 6285-94, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18562598

RESUMEN

Precerebellar neurons of the inferior olive (IO) and lateral reticular nucleus (LRN) migrate tangentially from the rhombic lip toward the floor plate following parallel pathways. This process is thought to involve netrin-1 attraction. However, whereas the cell bodies of LRN neurons cross the midline, IO neurons are unable to do so. In many systems and species, axon guidance and cell migration at the midline are controlled by Slits and their receptor Robos. We showed previously that precerebellar axons and neurons do not cross the midline in the absence of the Robo3 receptor. To determine whether this signaling by Slits and the two other Robo receptors, Robo1 and Robo2, also regulates precerebellar neuron behavior at the floor plate, we studied the phenotype of Slit1/2 and Robo1/2/3 compound mutants. Our results showed that many IO neurons can cross the midline in absence of Slit1/2 or Robo1/2, supporting a role for midline repellents in guiding precerebellar neurons. We also show that these molecules control the development of the lamellation of the inferior olivary complex. Last, the analysis of Robo1/2/3 triple mutants suggests that Robo3 inhibits Robo1/2 repulsion in precrossing LRN axons but not in IO axons in which it has a dominant and distinct function.


Asunto(s)
Movimiento Celular/fisiología , Cerebelo/citología , Cerebelo/embriología , Neuronas/citología , Animales , Cerebelo/metabolismo , Glicoproteínas/deficiencia , Glicoproteínas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Núcleo Olivar/citología , Núcleo Olivar/embriología , Núcleo Olivar/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Formación Reticular/citología , Formación Reticular/embriología , Formación Reticular/metabolismo , Proteínas Roundabout
17.
J Comp Neurol ; 506(2): 240-62, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18022955

RESUMEN

The acquisition of the dynamic balance between excitation and inhibition in developing Purkinje cells, necessary for their proper function, is analyzed. Newborn (P0) mouse cerebellum contains glutamatergic (VGLUT2-IR) and gamma-aminobutyric acid (GABA)-ergic (VIAAT-IR) axons. The former prevail and belong to climbing fibers, whereas the latter neither colabel with calbindin-expressing fibers nor belong to axons of the cortical GABAergic interneurons. During the first postnatal week, VIAAT-IR axons in the Purkinje cell neighborhood remains very low, and the first synapses with basket fibers are formed at P7, when climbing fibers have already established dense pericellular nets. The descending basket fibers reach the Purkinje cell axon initial segment by P9, immediately establishing axoaxonic synapses. The pinceaux appear as primitive vortex-like arrangements by P12, and by P20 interbasket fiber septate-like junctions, typical of fully mature pinceaux, are still missing. The climbing fiber's somatodendritic translocation occurs later than expected, after the regression of the multiple innervation, and follows the ascending collaterals of the basket axons, which are apparently the optimal substrate for the proper subcellular targeting of the climbing fibers. These results emphasize that chemical transmission in the axon initial segment precedes the electrical inhibition generated by field effects. In addition, GABAergic Purkinje cells, as opposed to glutamatergic projection neurons in other cortical structures, do not begin to receive their excitation to inhibition balance until the end of the first postnatal week, despite the early presence of potentially functional GABAergic axons that possess the required vesicular transport system.


Asunto(s)
Dendritas/fisiología , Ácido Glutámico/metabolismo , Fibras Nerviosas/fisiología , Células de Purkinje/citología , Células de Purkinje/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Dendritas/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Fibras Nerviosas/ultraestructura , Factor de Transcripción PAX2/metabolismo , Parvalbúminas/metabolismo , Embarazo , Sinapsis/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
18.
J Neurosci ; 27(14): 3921-32, 2007 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-17409257

RESUMEN

Cerebellar granule cell progenitors proliferate postnatally in the upper part of the external granule cell layer (EGL) of the cerebellum. Postmitotic granule cells differentiate and migrate, tangentially in the EGL and then radially through the molecular and Purkinje cell layers. The molecular control of the transition between proliferation and differentiation in cerebellar granule cells is poorly understood. We show here that the transmembrane receptor Plexin-B2 is expressed by proliferating granule cell progenitors. To study Plexin-B2 function, we generated a targeted mutation of mouse Plexin-B2. Most Plexin-B2(-/-) mutants die at birth as a result of neural tube closure defects. Some mutants survive but their cerebellum cytoarchitecture is profoundly altered. This is correlated with a disorganization of the timing of granule cell proliferation and differentiation in the EGL. Many differentiated granule cells migrate inside the cerebellum and keep proliferating. These results reveal that Plexin-B2 controls the balance between proliferation and differentiation in granule cells.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Cerebelo/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética
19.
Cerebellum ; 5(2): 163-73, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16818391

RESUMEN

This review is devoted to Purkinje cell death occurring during development and in spontaneous cerebellar mutations of the mouse. We first present evidence in favor of an apoptotic developmental Purkinje cell death. Then, the different types of Purkinje cell degeneration occurring in mutant mice primarily affecting this neuronal population (nervous, purkinje cell degeneration, Lurcher, toppler, and woozy) are described and discussed. In addition, we show, by reporting new data, that cell death in tambaleante mutant mice can be related to autophagy. Last, we discuss the fact that the cell death pathways in mutant mice are more complex than the three types of developmental death generally described (apoptosis, autophagy, necrosis), since they share often characteristics of more than one type of these developmental cell deaths, particularly autophagy and apoptosis.


Asunto(s)
Apoptosis/genética , Corteza Cerebelosa/crecimiento & desarrollo , Corteza Cerebelosa/fisiopatología , Degeneración Nerviosa/fisiopatología , Células de Purkinje/fisiología , Animales , Autofagia/genética , Corteza Cerebelosa/patología , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes Neurológicos , Necrosis/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Células de Purkinje/patología
20.
Eur J Neurosci ; 22(9): 2134-44, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16262652

RESUMEN

To determine whether members of the Netrin-1 and Slit families and their receptors are expressed after central nervous system (CNS) injury, we performed in situ hybridization for netrin-1, slit-1, 2 and 3, and their receptors (dcc, unc5h-1, 2 and 3, robo-1, 2 and 3) 8 days, 2-3 months and 12-18 months after traumatic lesions of rat cerebellum. The expression pattern of these molecules was unchanged in axotomized Purkinje cells, whereas unc5h3 expression was upregulated in deafferented granule cells. Cells expressing slit-2 or dcc were never detected at the lesion site. By contrast, cells expressing netrin-1, slit-1 and slit-3, unc5h-1, 2 and 3, and robo-1, 2 and 3 (rig-1) could be detected at the cerebellar lesion site as soon as 8 days after injury. Expression of unc5h-2, robo-1, robo-2, slit-1 and slit-3 at the lesion site was maintained until 3 months, and up to 12-18 months for unc5h-1 and 3 and robo-3. Likewise, in the mouse spinal cord, netrin-1, slit-1 and slit-3 were also expressed at the lesion site 8 days after injury. Most of the cells expressing these mRNAs were located at the centre of the lesions, suggesting that they are macrophages/activated microglial cells (macrophagic cells) or meningeal fibroblastic cells. The macrophagic nature of most Netrin-1-positive cells and the macrophagic or fibroblastic nature of Robo-1-positive cells were corroborated by double staining. Thus, Netrin-1, Slits and their receptors may contribute to the regenerative failure of axons in the adult CNS by inhibiting axon outgrowth or by participating in the formation of the CNS scar.


Asunto(s)
Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Cerebelo/lesiones , Femenino , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Péptidos y Proteínas de Señalización Intercelular , Proteínas de la Membrana/genética , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética , Netrina-1 , Ratas , Ratas Wistar , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Roundabout
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...