Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Intervalo de año de publicación
1.
Protein Expr Purif ; 190: 106009, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34742914

RESUMEN

The enzymatic conversion of lignocellulosic biomass to fermentable sugars is determined by the enzymatic activity of cellulases; consequently, improving enzymatic activity has attracted great interest in the scientific community. Cocktails of commercial cellulase often have low ß-glucosidase content, leading to the accumulation of cellobiose. This accumulation inhibits the activity of the cellulolytic complex and can be used to determine the enzymatic efficiency of commercial cellulase cocktails. Here, a novel codon optimized ß-glucosidase gene (B-glusy) from Trichoderma reesei QM6a was cloned and expressed in three strains of Escherichia coli (E. coli). The synthetic sequence containing an open reading frame (ORF) of 1491 bp was used to encode a polypeptide of 497 amino acid residues. The ß-glucosidase recombinant protein that was expressed (57 kDa of molecular weight) was purified by Ni agarose affinity chromatography and visualized by SDS-PAGE. The recombinant protein was better expressed in E. coli BL21 (DE3), and its enzymatic activity was higher at neutral pH and 30 °C (22.4 U/mg). Subsequently, the ß-glucosidase was immobilized using magnetite nano-support, after which it maintained >65% of its enzymatic activity from pH 6 to 10, and was more stable than the free enzyme above 40 °C. The maximum immobilization yield had enzyme activity of 97.2%. In conclusion, ß-glucosidase is efficiently expressed in the microbial strain E. coli BL21 (DE3) grown in a simplified culture medium.


Asunto(s)
Enzimas Inmovilizadas , Escherichia coli , Proteínas Fúngicas , Expresión Génica , Hypocreales/genética , Nanopartículas de Magnetita/química , beta-Glucosidasa , Estabilidad de Enzimas , Enzimas Inmovilizadas/biosíntesis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Hypocreales/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , beta-Glucosidasa/biosíntesis , beta-Glucosidasa/química , beta-Glucosidasa/genética , beta-Glucosidasa/aislamiento & purificación
2.
J Mol Microbiol Biotechnol ; 29(1-6): 1-9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32325454

RESUMEN

Recently, biotechnological opportunities have been found in non-Saccharomyces yeasts because they possess metabolic characteristics that lead to the production of compounds of interest. It has been observed that Kluyveromyces marxianus has a great potential in the production of esters, which are aromatic compounds of industrial importance. The genetic bases that govern the synthesis of esters include a large group of enzymes, among which the most important are alcohol acetyl transferases (AATases) and esterases (AEATases), and it is known that some are present in K. marxianus, because it has genetic characteristics like S. cerevisiae. It also has a physiology suitable for biotechnological use since it is the eukaryotic microorganism with the fastest growth rate and has a wide range of thermotolerance with respect to other yeasts. In this work, the enzymatic background of K. marxianus involved in the synthesis of esters is analyzed, based on the sequences reported in the NCBI database.


Asunto(s)
Ésteres/metabolismo , Microbiología Industrial , Kluyveromyces/enzimología , Aciltransferasas , Alcohol Deshidrogenasa , Esterasas , Fermentación , Oxigenasas de Función Mixta , Odorantes
3.
Braz. arch. biol. technol ; 56(3): 357-363, May-June 2013. ilus
Artículo en Inglés | LILACS | ID: lil-679181

RESUMEN

In this work, fifty yeast strains, isolated from the spontaneous alcoholic fermentation of Agave duranguensis to produce mezcal, were tested using the double coupling system. These yeasts were from the genera Pichia, Torulaspora, Saccharomyces, Kluyveromyces, Deckera, Hanseniaspora, and Candida. P. fermentans ITD00165 was the best isoamyl acetate producer, yielding 0.38 g/L of ester after incubation for 24 h, while K. marxianus ITD00211 produced 0.32 g/L of ester. Thus P. fermentans TD00165 could be considered as an excellent choice for use in optimization studies of the culture medium and bioreactor operating conditions to develop a process for biotechnological production of isoamyl acetate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA