Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 8307, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859305

RESUMEN

Biogenic volatile organic compounds emitted from plants are important constituents of atmospheric chemistry and play a major role in the resistance of plants against various environmental stresses. However, little is known about how abiotic and biotic environments on a geographic scale relate to diversifications of the emission. Here, we present variations of terpenes stored in and emitted from leaves of a single species in a common garden, using genetically differentiated local populations of Japanese cedar, the most dominant and widely distributed tree species in Japan. Furthermore, we determined the composition of fungal communities in 50 locations, based on the presence or absence of 158 fungal species inhabiting the cedar. The results showed that terpenoids, especially those that are emitted, were highly diversified and geographically structured among the 12 populations. The total amount of stored terpenes was negatively affected by warm and less-snow climates. On the other hand, variations in some emitted terpenoid species among the populations were correlated to antagonistic fungal species inhabiting the Japanese cedar. We propose that the diversification of composition and amount of stored and emitted terpenoids in the tree species is not only structured by climate, but also antagonistic fungal communities through biological interactions.


Asunto(s)
Clima , Cryptomeria/metabolismo , Cryptomeria/microbiología , Micobioma , Terpenos/metabolismo , Cryptomeria/genética , Japón , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología
2.
J Undergrad Neurosci Educ ; 16(2): A112-A119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057492

RESUMEN

Many pre-health students pursue extracurricular shadowing opportunities to gain clinical experience. The Virginia Tech School of Neuroscience introduced a formal course that provides a clinical experience superior to that received by many medical students. This course is composed of weekly 75-minute seminars that cover diseases affecting the nervous system, their diagnosis and treatment, complemented by weekly half-day intensive clinical experiences with unprecedented access to a team of neurosurgeons (in hospital operating rooms, Intensive Care Units, emergency room, angiographic suites, and wards). In the operating rooms, students routinely "scrub-in" for complex surgeries. On hospital rounds, students experience direct patient care and receive in-depth exposure to modern nervous system imaging. Students participate in two 24-hour "on-call" experiences with team providers. After call, students participate in cognitive and psychological studies to assess physiological and psychological effects of call-related sleep deprivation. Students prepare weekly essays on challenging socioeconomic and ethical questions, exploring subjects such as the cost of medicine and inequalities in access to health care. Towards the end of the course, students meet with the admission dean of the Virginia Tech Carilion medical school; they prepare a personal statement for medical school/graduate school applications, and attend a half-day block of mock medical school/graduate school interviews delivered by experienced clinicians. In lieu of a final exam, each student presents to the entire neurosurgery department, an in-depth clinical analysis of a case in which they participated. We provide details on implementation, challenges and outcomes based on experiences from three semesters with a total enrollment of approximately 60 students.

3.
Chemosphere ; 87(8): 886-93, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22342335

RESUMEN

Reactive volatile organic compounds (VOCs) are known to affect atmospheric chemistry. Biogenic VOCs (BVOCs) have a significant impact on regional air quality due to their large emission rates and high reactivities. Diterpenes (most particularly, kaur-16-ene) were detected in all of the 205 enclosure air samples collected over multiple seasons at two different sites from Cryptomeria japonica and Chamaecyparis obtusa trees, the dominant coniferous trees in Japan,. The emission rate of kaur-16-ene, was determined to be from 0.01 to 7.1 µg dwg(-1) h(-1) (average: 0.61 µg dwg(-1) h(-1)) employing branch enclosure measurements using adsorbent sampling followed by solid phase-liquid extraction techniques. The emission rate was comparable to that of monoterpenes, which is known major BVOC emissions, collected from the same branches. In addition, total emission of kaur-16-ene at 30°C was estimated to exceed that of total anthropogenic VOC emissions.


Asunto(s)
Chamaecyparis/química , Cryptomeria/química , Diterpenos/análisis , Árboles/química , Compuestos Orgánicos Volátiles/análisis , Diterpenos/química , Diterpenos/aislamiento & purificación , Japón , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...