Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Iran J Microbiol ; 16(1): 79-89, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38682070

RESUMEN

Background and Objectives: Mesenchymal Stem Cells (MSCs) can repair gastrointestinal tract damage. The Secretome of MSCs has a high capacity to inhibit bacterial colonization and the subsequent inflammatory responses of Vibrio cholerae. Materials and Methods: The Caco-2 cells were treated with adipose-derived MSCs (AD-MSCs) secretome and then infected with V. cholerae. Subsequently, the bacterial attachment and invasion, cholera toxin gene expression, PGE2 and IL-6 secretion, TNF-α, IL-1ß, and IL-8 expression, and apoptosis of Caco-2 cells were evaluated. Results: The secretome of AD-MSCs significantly reduced the V. cholerae attachment and internalization on Caco-2 epithelial cells (P<0.0001). The cholera toxin (Ctx-B) gene expression (FR=4.56 ± 0.66) and PGE2 production (P=0.0007) were also significantly reduced. The production of NO and TNF-α, IL-1ß, and IL-8 pro-inflammatory cytokines were significantly (P<0.05) reduced in exposure to the secretome of AD-MSCs. Secretome also improved a significant 81.33% increase in IL-6 production (128.1 ± 37.6 pg/mL) and showed a 12.36% significant decrease in epithelial cell apoptosis (P< 0.0001) after exposure to V. cholerae. Conclusion: The secretome of AD-MSCs can play a critical role in inhibiting bacterial colonization, and subsequent inflammatory responses, and maintaining the integrity of the epithelial barrier. The secretome may be effective in the prevention of hypovolemic shock.

2.
Inflammopharmacology ; 32(2): 1317-1332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512654

RESUMEN

The undesirable inflammation and the excessive M1 macrophage activity may lead to inflammatory diseases. Corticosteroids and stem cell therapy are used in clinical practice to promote anti-inflammatory responses. However, this protocol has limitations and is associated with numerous side effects. In this study, the synergistic anti-inflammatory effects of dexamethasone (Dex) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) were evaluated to enhance the polarization of M1 inflammatory macrophages into the anti-inflammatory (M2) phenotype. Hence, we designed different combinations of Dex and EVs using three methods, including EVs isolated from Dex-preconditioned MSCs (Pre-Dex-EVs), EVs loaded with Dex (L-Dex-EVs), and EVs and Dex co-administration (Dex + EVs). All designed EVs had a significant effect on reducing the expression of M1-related genes (iNOS, Stat1, and IRF5), cytokines (IL6 and TNF-a), and CD markers (CD86) in lipopolysaccharide-stimulated macrophages. On the other hand, these combinations promoted the expression of alternative-activated M2-related genes (Arg-1, Stat6, and IRF4), cytokine (IL10), and CD markers (CD206).The combination of Dex and MSC-EVs enhances the effectiveness of both and synergistically promotes the conversion of inflammatory macrophages into an anti-inflammatory state.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Dexametasona/farmacología
3.
Biomed Pharmacother ; 173: 116382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460368

RESUMEN

Lymphoid organs are the main structural components of the immune system. In the current research, the mixture of poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), and M13 phage or its RGD-modified form was used in the construction of a fibrillar scaffold using the electrospinning method. The constructs were transplanted intra-abdominally and examined for the formation of lymphoid-like tissues at different time intervals. The confocal and scanning electron microscopy demonstrate that M13 phage-containing scaffolds provide a suitable environment for lymph node-isolated fibroblasts. Morphological analysis demonstrate the formation of lymph node-like tissues in the M13 phage-containing scaffolds after transplantation. Histological analysis confirm both blood and lymph angiogenesis in the implanted construct and migration of inflammatory cells to the M13 phage-containing scaffolds. In addition, flow cytometry and immunohistochemistry analysis showed the homing and compartmentalization of dendritic cells (DCs), B and T lymphocytes within the PLGA/PCL/M13 phage-RGD based scaffolds and similar to what is seen in the mouse lymphoid tissues. It seems that the application of M13 phage could improve the generation of functional lymphoid tissues in the electrospun scaffolds and could be used for lymphoid tissue regeneration.


Asunto(s)
Glicoles , Andamios del Tejido , Ratones , Animales , Andamios del Tejido/química , Bacteriófago M13 , Poliésteres/química , Tejido Linfoide , Oligopéptidos , Ingeniería de Tejidos
4.
Front Immunol ; 14: 1280601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022534

RESUMEN

Malignancies contain a relatively small number of Mesenchymal stem/stromal cells (MSCs), constituting a crucial tumor microenvironment (TME) component. These cells comprise approximately 0.01-5% of the total TME cell population. MSC differentiation potential and their interaction with the tumor environment enable these cells to affect tumor cells' growth, immune evasion, metastasis, drug resistance, and angiogenesis. This type of MSC, known as cancer-associated mesenchymal stem/stromal cells (CA-MSCs (interacts with tumor/non-tumor cells in the TME and affects their function by producing cytokines, chemokines, and various growth factors to facilitate tumor cell migration, survival, proliferation, and tumor progression. Considering that the effect of different cells on each other in the TME is a multi-faceted relationship, it is essential to discover the role of these relationships for targeting in tumor therapy. Due to the immunomodulatory role and the tissue repair characteristic of MSCs, these cells can help tumor growth from different aspects. CA-MSCs indirectly suppress antitumor immune response through several mechanisms, including decreasing dendritic cells (DCs) antigen presentation potential, disrupting natural killer (NK) cell differentiation, inducing immunoinhibitory subsets like tumor-associated macrophages (TAMs) and Treg cells, and immune checkpoint expression to reduce effector T cell antitumor responses. Therefore, if these cells can be targeted for treatment so that their population decreases, we can hope for the treatment and improvement of the tumor conditions. Also, various studies show that CA-MSCs in the TME can affect other vital aspects of a tumor, including cell proliferation, drug resistance, angiogenesis, and tumor cell invasion and metastasis. In this review article, we will discuss in detail some of the mechanisms by which CA-MSCs suppress the innate and adaptive immune systems and other mechanisms related to tumor progression.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Humanos , Citocinas/metabolismo , Diferenciación Celular , Inmunidad , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
5.
Bioimpacts ; 13(5): 393-403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736336

RESUMEN

Introduction: Induction of a protective immune response against Leishmania major requires the activation of both TH1 and CD8+ T lymphocytes. Because L. major is an intra-phagosomal parasite, its antigens do not have access to MHC-I. The present study aimed to evaluate the effect of cysteine peptidase A (CPA)/cysteine peptidase B (CPB) conjugated to α-AL2O3 on autophagy induction in L. major infected macrophages and subsequent activation of cytotoxic CD8+ T lymphocytes. Methods: Recombinant CPA and CPB of L. major were produced in expression vectors and purified. Aldehyde functionalized α-AL2O3 were conjugated to hydrazine-modified CPA/CPB by a chemical bond was confirmed by Fourier-transform infrared spectroscopy (FTIR). The High efficient internalization of α-AL2O3 conjugated CPA/CPB to macrophages was confirmed using a fluorescence microscope and flowcytometry. Induction of the acidic autophagosome and LC3 conversion in macrophages was determined by acridine orange (AO) staining and western blot. Autophagy-activated macrophages were used for CD8+ T cell priming. Cytotoxic activity of the primed CD8+ T cell against L. major infected macrophages was measured using apoptosis assay. Results: α-AL2O3 conjugated CPA/CPB enhances macrophages antigen uptake and increases acidic vacuole formation and LC-3I to LC-3II conversion. Co-culture of autophagy-activated macrophages with CD8+ T cells augmented CD8+ T cells priming and proliferation more than in other study groups. These primed CD8+ T cells induce significant apoptotic death of L. major infected macrophages compared with non-primed CD8+ T cells. Conclusion: α-AL2O3 nanoparticles enhance the cross-presentation of L. major antigens to CD8+ T cells by inducing autophagy. This finding supports the positive role of autophagy and encourages the use of α-AL2O3 in vaccine design.

6.
Heliyon ; 9(5): e15489, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37153436

RESUMEN

Diabetes is a highly common metabolic disorder in advanced societies. One of the causes of diabetes is insulin resistance, which is associated with a loss of sensitivity to insulin-sensitive cells. Insulin resistance develops in the body of a person prone to diabetes many years before diabetes development. Insulin resistance is associated with complications such as hyperglycemia, hyperlipidemia, and compensatory hyperinsulinemia and causes liver inflammation, which, if left untreated, can lead to cirrhosis, fibrosis, and even liver cancer. Metformin is the first line of treatment for patients with diabetes, which lowers blood sugar and increases insulin sensitivity by inhibiting gluconeogenesis in liver cells. The use of metformin has side effects, including a metallic taste in the mouth, vomiting, nausea, diarrhea, and upset stomach. For this reason, other treatments, along with metformin, are being developed. Considering the anti-inflammatory role of mesenchymal stem cells (MSCs) derived exosomes, their use seems to help improve liver tissue function and prevent damage caused by inflammation. This study investigated the anti-inflammatory effect of Wharton's jelly MSCs derived exosomes in combination with metformin in the HepG2 cells insulin resistance model induced by high glucose. This study showed that MSCs derived exosomes as an anti-inflammatory agent in combination with metformin could increase the therapeutic efficacy of metformin without needing to change metformin doses by decreasing inflammatory cytokines production, including IL-1, IL-6, and TNF-α and apoptosis in HepG2 cells.

7.
Life Sci ; 326: 121813, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257578

RESUMEN

Aim Sepsis is a medical emergency with no definitive treatment. Animal experiments have confirmed the therapeutic characteristics of exosomes in reducing inflammation and tissue damage. The study investigates the effect of MSC and hepatocyte-derived exosomes along with imipenem in controlling systemic and local (liver) inflammation in a mouse model of sepsis. MAIN METHODS: To induce sepsis in C57BL/6 mice, the Cecal Ligation and Puncture (CLP) model was used. The mice were given various treatments, including imipenem, MSC-derived exosomes, hepatocyte-derived exosomes, and a mixture of exosomes. Blood and liver samples were collected and analyzed for cell blood count, liver enzymes, NO levels, cytokine concentrations, and bacterial presence. The percentages of TCD3 + CD4+/CD8+ and Treg in the spleen and mesenteric lymph nodes were also assessed using flow cytometry. The pathological changes were assessed in the liver, lung, and heart tissues. In addition, the cytokine content of exosomes was measured by ELISA. KEY FINDINGS: Our results demonstrated that MSC-derived exosomes+imipenem could control systemic and local inflammation and increase the TCD4+ and Treg populations. Hepatocyte-derived exosomes+imipenem reduced inflammation in the liver and increased the TCD8+ and Treg populations. The mixture of exosomes+imipenem had the best function in reducing inflammation, maintaining all T lymphocyte populations, reducing liver damage, and ultimately increasing the survival rate. SIGNIFICANCE: The mixture of exosomes derived from MSCs and hepatocytes, along with imipenem, in the inflammatory phase of sepsis could be a promising therapeutic strategy in sepsis treatment.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Sepsis , Ratones , Animales , Imipenem/farmacología , Exosomas/patología , Ratones Endogámicos C57BL , Hepatocitos/patología , Citocinas , Hígado/patología , Inflamación/tratamiento farmacológico , Sepsis/patología , Células Madre Mesenquimatosas/patología
8.
Biomed Pharmacother ; 162: 114615, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011484

RESUMEN

Cell therapy is one of the methods that have shown promising results in treating diseases in recent decades. However, the use of different types of cells comes with limitations. The application of immune cells in cell therapy can lead to cytokine storms and inappropriate responses to self-antigens. Also, the use of stem cells has the potential to create tumors. Also, cells may not migrate to the injury site after intravenous injection. Therefore, using exosomes from different cells as therapeutic candidates were proposed. Due to their small size and favorable characteristics, such as biocompatibility and immunocompatibility, the easy storage and isolation, exosomes have attracted much attention. They are used in treating many diseases, including cardiovascular diseases, orthopedic diseases, autoimmune diseases, and cancer. However, the results of various studies have shown that the therapeutic efficiency of exosomes (Exo) can be increased by loading different drugs and microRNAs inside them (encapsulated exosomes). Therefore, analyzing studies investigating encapsulated exosomes' therapeutic ability is critical. In this study, we have examined the studies related to the use of encapsulated exosomes in treating diseases such as cancer and infectious diseases and their use in regenerative medicine. Compared to intact exosomes, the results show that the application of encapsulated exosomes has a higher therapeutic ability. Therefore it is suggested to use this method depending on the treatment type to increase the treatment's efficiency.


Asunto(s)
Exosomas , MicroARNs , Exosomas/metabolismo , MicroARNs/metabolismo , Células Madre , Medicina Regenerativa
9.
Life Sci ; 317: 121465, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731650

RESUMEN

Mesenchymal stem cells (MSCs) are among the known cells that can control and modulate immune responses in different circumstances, including autoimmune diseases. Also, various studies have shown that they can prevent and reduces the pulmonary inflammation caused by infectious agents. In the case of tuberculosis and inflammation caused by BCG, the granuloma has destructive effects and improper orientation of the immune response. Therefore, it is possible to prevent airway damage by preventing harmful inflammatory responses and guiding the immune system responses. This study investigates the role of nasal administration of MSCs supernatant by designing an inflammatory model in the BALB/c mice lung with BCG. MSCs are isolated from mice adipose tissue in this study and evaluated for their phenotypic and differentiation properties. After the third passage, these cells' condition medium (CM) was collected. 20 mice were divided into four groups. Group 1 receive BCG (107 CFU in 5 ml volume for 15 min) nasal administration. Group 2 treated with CM, and group 3 initially were treated with CM (in 5 ml volume for 15 min) and, after 24 h, treated with BCG nasal administration. CM treatment was continued every five days for one month. The fourth group of mice was treated with PBS nasal administration of CM and BCG. One week after the last administration, the lung tissue of mice in each group was pathologically examined. In addition, secretion of IL1-ß, IL-6, TNF-α, TGF-ß, and IL-10 in the alveolar fluid and secretion of IL-4 and IFN-γ cytokines in the supernatant of splenocytes was evaluated by ELISA. The TNF-α/IL-10 ratio in the alveolar lung fluid of the BCG received group is 2/9 and decreased to 0.58 after successive CM treatment. Therefore, it can be concluded that inflammatory responses to BCG infection in the presence of CM are balanced and pave the way for the induction of effective immune responses by reducing lung tissue damage.


Asunto(s)
Células Madre Mesenquimatosas , Neumonía , Ratones , Animales , Interleucina-10 , Vacuna BCG , Administración Intranasal , Ratones Endogámicos BALB C , Factor de Necrosis Tumoral alfa
10.
J Control Release ; 354: 755-769, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36706838

RESUMEN

Mesenchymal stromal/stem cells (MSCs) perform their therapeutic effects through various mechanisms, including their ability to differentiate, producing different growth factors, immunomodulatory factors, and extracellular vesicles (EVs). In addition to the mentioned mechanisms, a new aspect of the therapeutic potential of MSCs has recently been noticed, which occurs through mitochondrial transfer. Various methods of MSCs mitochondria transfer have been used in studies to benefit from their therapeutic potential. Among these methods, mitochondrial transfer after MSCs transplantation in cell-to-cell contact, EVs-mediated transfer of mitochondria, and the use of MSCs isolated mitochondria (MSCs-mt) are well studied. Pathological conditions can affect the cells in the damaged microenvironment and lead to cells mitochondrial damage. Since the defect in the mitochondrial function of the cell leads to a decrease in ATP production and the subsequent cell death, restoring the mitochondrial content, functions, and hemostasis can affect the functions of the damaged cell. Various studies show that the transfer of MSCs mitochondria to other cells can affect vital processes such as proliferation, differentiation, cell metabolism, inflammatory responses, cell senescence, cell stress, and cell migration. These changes in cell attributes and behavior are very important for therapeutic purposes. For this reason, their investigation can play a significant role in the direction of the researchers'.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Movimiento Celular , Mitocondrias/metabolismo , Vesículas Extracelulares/metabolismo
11.
Shock ; 59(3): 493-504, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36576361

RESUMEN

ABSTRACT: Background: Sepsis is a life-threatening disorder that leads to the induction of inflammatory responses and organ failure. Phage therapy is a new approach to controlling infections resistant to common treatments, including sepsis. Several studies have shown the effect of lytic bacteriophages on infection control by reducing the bacterial load. The present study deals with lysogenic bacteriophage M13 on the inflammatory responses caused by cecal ligation and puncture (CLP)-induced sepsis in a mouse model. Methods Bacteriophage M13 harvested from ER2738, titrated, and confirmed by transmission electron microscopy analysis. In vitro toxicity and immunomodulatory effect of bacteriophage M13 were assessed on splenocytes by measurement of cell viability and the production level of cytokines, nitric oxide, and reactive oxygen species. For in vivo experiments, 8-weeks-old male C57BL/6 mice were randomly divided into the following three groups: CLP + NS (treated with normal saline), CLP + M13 (treated with an intraperitoneal injection of 10 9 PFU/mL of bacteriophage M13), and sham + NS (induced surgery but without ligation and puncture, treated with NS). The mice were killed at different time points after surgery (6, 24, 48, and 72, n = 10 for each time point of each group). The kidney, liver, and lungs were harvested for histopathological analysis, and blood was obtained for cytokine and liver enzyme assay. The spleen was used to assess the bacterial load using colony-forming unit assay. The rectal temperature and survival were evaluated during the study. Results According to the in vitro results, 10 9 PFU/mL of bacteriophage M13 was not toxic and did not affect the level of cytokine, nitric oxide, and reactive oxygen species production by splenocytes, but it reduced the inflammatory response of splenocytes in responses to LPS. In vivo studies indicated that the amount of proinflammatory cytokines, liver enzymes, bacterial load, and organ failure were decreased in the CLP + M13 group compared with CLP + NS, whereas the survival rate was increased. Conclusions These experiments demonstrated that bacteriophage M13 could lessen the consequences related to sepsis in CLP mice and can be considered a therapeutic approach in sepsis.


Asunto(s)
Bacteriófago M13 , Sepsis , Ratones , Masculino , Animales , Óxido Nítrico , Especies Reactivas de Oxígeno , Ratones Endogámicos C57BL , Citocinas , Sepsis/tratamiento farmacológico , Punciones/efectos adversos , Ciego/cirugía , Modelos Animales de Enfermedad
12.
Iran J Allergy Asthma Immunol ; 22(6): 588-599, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38477955

RESUMEN

Pathogen recognition receptors (PRRs), which play a crucial role in responding to pathogens, affect the function of mesenchymal stem cells (MSCs). One important group of PRRs is the toll-like receptors (TLRs). When PRRs are activated, they can alter the expression of specific surface markers, the ability of MSCs to differentiate, and the types of substances they secrete. These modifications in MSC function may have unexpected consequences for patients. In this study, we examined how Leishmania major (L. major) promastigotes affect the properties of MSCs. MSCs were isolated from adipose tissue and categorized into two groups: one group left untreated and the other group exposed to L. major. Giemsa staining was employed to accurately quantify the number of parasites that entered the cells. After 72 hours, real-time polymerase chain reaction was utilized to assess the expression of TLRs. Additionally, the flow cytometry technique was used to evaluate the expression of surface markers on the MSCs. Our results showed that MSCs can engulf parasites and increase the expression of TLR4 and TLR6. The pro-inflammatory cytokine increased, and the transforming growth factor-ß decreased significantly. The parasite exposure increased reactive oxygen species production. Additionally, the percentage of cluster differentiation (CD) 73 decreased, and the mean fluorescent index of CD29 and CD73 was down-regulated by L. major. Exposure to parasites diminishes the immunomodulatory capacity of MSCs. This discovery holds significance for the application of MSCs in addressing parasite infections and underscores the need for additional research to enhance their therapeutic effectiveness.


Asunto(s)
Leishmania major , Células Madre Mesenquimatosas , Humanos , Diferenciación Celular , Factor de Crecimiento Transformador beta , Tejido Adiposo
13.
Biomed Pharmacother ; 156: 113943, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411629

RESUMEN

Cell therapy is one of the newest therapeutic approaches for treating tissue destruction diseases and replacing damaged parts in defective tissues. Among different cells, mesenchymal stem cells (MSCs) have received a lot of attention due to their advantages and desirable properties. Also, MSCs-derived secretome, which includes various growth factors, cytokines, and extracellular vesicles (EVs), is used in the treatment of different types of diseases. However, the application of MSCs in an intact form brings their functionality with limitations. For this reason, different methods are recommended to increase their efficiency and the extracellular vesicles derived from them. One of these methods is gene editing of these cells. Among the different techniques for MSCs gene editing, CRISPR/Cas9 can increase the therapeutic potential of MSCs in a targeted manner due to its advantages. In order to achieve the desired result, various genes have been manipulated in MSCs, including genes involved in stemness, aging, migration, proliferation, survival, and inflammatory responses. Engineering MSCs with this method affects the cells' characteristics, changes their cytokine and different growth factors secretions, and increases their therapeutic efficiency.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Sistemas CRISPR-Cas/genética , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
14.
Life Sci ; 310: 120938, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150466

RESUMEN

BACKGROUND: Sepsis is a debilitating systemic inflammation that resulted from infection or injury. Despite many advances in treatment, the resulting mortality rate has remained high due to increasing antibiotic resistance and aging communities. The present study investigated the effects of stem cell-derived exosomes in a mouse model of LPS-induced systemic inflammation. MATERIALS AND METHODS: To induce sepsis, the LPS model was used. Mice were divided into three groups: normal, patient group (LPS + PBS), and treatment group (LPS + exosome). The treatment group received an intravenous exosome 1 h after induction of the model. Patient and treatment groups were sacrificed at 4, 6, 24, and 48 h after induction of the model, and their tissues were isolated. Blood samples were taken from animal hearts to perform biochemical and immunological tests. The study results were analyzed using Graph Pad Prism software version 9. RESULTS: Mesenchymal stem cell-derived exosomes decreased serum levels of ALT and AST liver enzymes, decreased neutrophil to lymphocyte ratio (NLR), and improved kidney, liver, and lung tissue damage at 4, 6, and 24 h after model induction. At 24 h, the exosomes were able to reduce serum urea levels. This study revealed decreased levels of inflammatory cytokines such as IL-6, IL-1ß, and TNF-α after exosome injection. CONCLUSION: Our findings suggest that treating mice with stem cell-derived exosomes can ameliorate the destructive effects of inflammation caused by sepsis by reducing inflammatory factors and tissue damage.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Sepsis , Ratones , Animales , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Inflamación , Modelos Animales de Enfermedad , Sepsis/inducido químicamente , Sepsis/terapia
15.
Iran J Allergy Asthma Immunol ; 21(3): 273-286, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35822678

RESUMEN

Antibiotics are used to treat bacterial liver infections and the resulting inflammation. However, their use is limited due to their side effects, especially the development of antibiotic resistance. Mesenchymal stem cells (MSCs) are recognized for their immunomodulatory properties. In this study, we investigated the immunomodulatory effect of Wharton's jelly MSC-derived exosomes in combination with imipenem on HepG2 cells infected with Escherichia col i.MSC-derived exosomes were separated from MSCs, which were isolated by flow cytometry. Scanning electron microscopy and dynamic light scanning were used to confirm the presence of exosomes. Quantitative real-time PCR, ELISA, and nitric oxide assay were used to assess the inflammatory response in the infected cells. Annexin-PI was used to measure the extent of apoptosis. The results showed that the combination of imipenem and MSC-derived exosomes were more effective than imipenem or exosomes alone in reducing the production and secretion of inflammatory cytokines, nitric oxide, and apoptotic rate in E Coli-infected HepG2 cells.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Gelatina de Wharton , Apoptosis , Escherichia coli , Células Hep G2 , Humanos , Imipenem/farmacología , Óxido Nítrico
16.
Nanobiomedicine (Rij) ; 9: 18495435221088374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677573

RESUMEN

The aim of this study was to evaluate the cytotoxicity and immune-stimulatory effect of Mesoporous silica nanoparticle (MSN) Nano-adjuvant on pro-inflammatory cytokines and pattern recognition receptors (PRR) genes expression in Caco-2/PBMC co-culture model. MSNs were synthesized and characterized by scanning electron microscope (SEM), Brunauer Emmett Teller (BET) and Barrett Joyner Halenda (BJH) techniques. The BET specific surface area of MSNs was around 947 m2/g and the total pore volume and average pore diameter were 1.5 cm3/g and 8.01 nm, respectively. At the concentration of 10 µg/mL, MSN showed a low and time-dependent cytotoxicity on Caco-2 cells, while no cytotoxic effect was observed for 0.1 and 1 µg/mL concentrations after 24, 48 and 72 h. The expression of pro-inflammatory cytokines genes (IL-1, IL-8 and TNF-α) in co-cultures treated with different concentrations of MSN showed a dose-dependent significant increase up to 17.44, 2.722 and 4.34 folds, respectively, while the expression augmentation of IL-1 gene was significantly higher than the others. This indicates slight stimulation of intestinal inflammation. Different concentrations of MSN significantly increased TLR4 and NOD2 expression to 4.14 and 2.14 folds, respectively. NOD1 was not affected significantly. It can be concluded that MSN might increase protective immune responses against antigens as a vaccine adjuvant candidate. It seems that stimulation of TNF-α, IL-1, and IL-8 expression in enterocytes probably transpires through the agonistic activity of MSN for TLRs including TLR4, while NOD2-associated signaling pathways are also involved. This study provides an overall picture of MSN as a novel and potent oral adjuvant for mucosal immunity.

17.
Biomed Pharmacother ; 152: 113211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696942

RESUMEN

Cell therapy is one of the new treatment methods in which mesenchymal stem/stromal cell (MSCs) transplantation is one of the cells widely used in this field. The results of MSCs application in the clinic prove their therapeutic efficacy. For this reason, many clinical trials have been designed based on the application of MSCs for various diseases, especially inflammatory disease and regenerative medicine. These cells perform their therapeutic functions through multiple mechanisms, including the differentiative potential, immunomodulatory properties, production of therapeutic exosomes, production of growth factors and cytokines, and anti-apoptotic effects. Exosomes are nanosized extracellular vesicles (EVs) that change target cell functions by transferring different cargos. The therapeutic ability of MSCs-derived exosomes has been demonstrated in many studies. However, some limitations, such as the low production of exosomes by cells and the need for large amounts of them and also their limited therapeutic ability, have encouraged researchers to find methods that increase exosomes' therapeutic potential. One of these methods is the spheroid culture of MSCs. Studies show that the three-dimensional culture (3DCC) of MSCs in the form of multicellular spheroids increases the therapeutic efficacy of these cells in laboratory and animal applications. In addition, the spheroid culture of MSCs leads to enhanced therapeutic properties of their exosomes and production rate. Due to the novelty of the field of using 3DCC MSCs-derived exosomes, examination of their properties and the results of their therapeutic application can increase our view of this field. This review discussed MSCs and their exosomes enhanced properties in spheroid culture.


Asunto(s)
Exosomas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Esferoides Celulares
18.
Biomark Res ; 10(1): 30, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550636

RESUMEN

Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.

19.
Front Immunol ; 13: 865888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464407

RESUMEN

Various factors, including viral and bacterial infections, autoimmune responses, diabetes, drugs, alcohol abuse, and fat deposition, can damage liver tissue and impair its function. These factors affect the liver tissue and lead to acute and chronic liver damage, and if left untreated, can eventually lead to cirrhosis, fibrosis, and liver carcinoma. The main treatment for these disorders is liver transplantation. Still, given the few tissue donors, problems with tissue rejection, immunosuppression caused by medications taken while receiving tissue, and the high cost of transplantation, liver transplantation have been limited. Therefore, finding alternative treatments that do not have the mentioned problems is significant. Cell therapy is one of the treatments that has received a lot of attention today. Hepatocytes and mesenchymal stromal/stem cells (MSCs) are used in many patients to treat liver-related diseases. In the meantime, the use of mesenchymal stem cells has been studied more than other cells due to their favourable characteristics and has reduced the need for liver transplantation. These cells increase the regeneration and repair of liver tissue through various mechanisms, including migration to the site of liver injury, differentiation into liver cells, production of extracellular vesicles (EVs), secretion of various growth factors, and regulation of the immune system. Notably, cell therapy is not entirely excellent and has problems such as cell rejection, undesirable differentiation, accumulation in unwanted locations, and potential tumorigenesis. Therefore, the application of MSCs derived EVs, including exosomes, can help treat liver disease and prevent its progression. Exosomes can prevent apoptosis and induce proliferation by transferring different cargos to the target cell. In addition, these vesicles have been shown to transport hepatocyte growth factor (HGF) and can promote the hepatocytes'(one of the most important cells in the liver parenchyma) growths.


Asunto(s)
Vesículas Extracelulares , Hepatopatías , Células Madre Mesenquimatosas , Vesículas Extracelulares/metabolismo , Fibrosis , Humanos , Inmunomodulación , Hepatopatías/etiología , Hepatopatías/metabolismo , Hepatopatías/terapia , Células Madre Mesenquimatosas/metabolismo
20.
Int Immunopharmacol ; 107: 108654, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35421683

RESUMEN

Bacteriophages are one of the viral components of the human microbiome. M13 phages have recently been considered for immunotherapy because they can be detected by immune cells and stimulated immune responses. Macrophages are essential innate immune cells that respond to stimuli and direct subsequent immune responses. Therefore, it is crucial to evaluate the immunomodulatory effect of phage on macrophage function. For this purpose, peritoneal macrophages from BALB/c and C57BL/6 mice were cultured on the M13 phage, M13 phage-RGD, gelatin-coated, and un-coated wells. Then macrophages were examined for morphological characteristics, L. arginine metabolism, redox potential, inflammatory cytokine production, and phagocytic activity after two and seven days of culture. We observed that M13 phage-coated surfaces induced anti-inflammatory cytokines production and reduced inflammatory cytokines level of BALB/c and C57BL/6 macrophages at the steady-state and post LPS stimulation. In addition, L. arginine metabolism and phagocytic activity of macrophages were directed to the M2 phenotype by induction of arginase-1 and efferocytosis in the M13 phage-containing groups, respectively. The present study confirms the M13 phage's ability to polarize macrophages toward the M2 phenotype. However, using M13 phage in treating inflammatory diseases in animal models could determine their immunotherapy capacity in the future.


Asunto(s)
Bacteriófago M13 , Macrófagos Peritoneales , Animales , Antiinflamatorios/metabolismo , Arginina , Bacteriófago M13/metabolismo , Citocinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA