Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(49): E11465-E11474, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455320

RESUMEN

A-kinase anchoring proteins (AKAPs) shape second-messenger signaling responses by constraining protein kinase A (PKA) at precise intracellular locations. A defining feature of AKAPs is a helical region that binds to regulatory subunits (RII) of PKA. Mining patient-derived databases has identified 42 nonsynonymous SNPs in the PKA-anchoring helices of five AKAPs. Solid-phase RII binding assays confirmed that 21 of these amino acid substitutions disrupt PKA anchoring. The most deleterious side-chain modifications are situated toward C-termini of AKAP helices. More extensive analysis was conducted on a valine-to-methionine variant in the PKA-anchoring helix of AKAP18. Molecular modeling indicates that additional density provided by methionine at position 282 in the AKAP18γ isoform deflects the pitch of the helical anchoring surface outward by 6.6°. Fluorescence polarization measurements show that this subtle topological change reduces RII-binding affinity 8.8-fold and impairs cAMP responsive potentiation of L-type Ca2+ currents in situ. Live-cell imaging of AKAP18γ V282M-GFP adducts led to the unexpected discovery that loss of PKA anchoring promotes nuclear accumulation of this polymorphic variant. Targeting proceeds via a mechanism whereby association with the PKA holoenzyme masks a polybasic nuclear localization signal on the anchoring protein. This led to the discovery of AKAP18ε: an exclusively nuclear isoform that lacks a PKA-anchoring helix. Enzyme-mediated proximity-proteomics reveal that compartment-selective variants of AKAP18 associate with distinct binding partners. Thus, naturally occurring PKA-anchoring-defective AKAP variants not only perturb dissemination of local second-messenger responses, but also may influence the intracellular distribution of certain AKAP18 isoforms.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de la Membrana/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Polimorfismo de Nucleótido Simple , Unión Proteica , Conformación Proteica , Isoformas de Proteínas , Transporte de Proteínas
2.
Mol Cell ; 32(2): 169-79, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951085

RESUMEN

Elevated catecholamines in the heart evoke transcriptional activation of the Myocyte Enhancer Factor (MEF) pathway to induce a cellular response known as pathological myocardial hypertrophy. We have discovered that the A-Kinase Anchoring Protein (AKAP)-Lbc is upregulated in hypertrophic cardiomyocytes. It coordinates activation and movement of signaling proteins that initiate MEF2-mediated transcriptional reprogramming events. Live-cell imaging, fluorescent kinase activity reporters, and RNA interference techniques show that AKAP-Lbc couples activation of protein kinase D (PKD) with the phosphorylation-dependent nuclear export of the class II histone deacetylase HDAC5. These studies uncover a role for AKAP-Lbc in which increased expression of the anchoring protein selectively amplifies a signaling pathway that drives cardiac myocytes toward a pathophysiological outcome.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Cardiomegalia/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transducción de Señal , Proteínas 14-3-3/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Histona Desacetilasas/metabolismo , Humanos , Factores de Transcripción MEF2 , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores Reguladores Miogénicos/metabolismo , Fenilefrina/farmacología , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Ratas
3.
Mol Cell ; 23(6): 925-31, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973443

RESUMEN

Spatiotemporal organization of cAMP signaling begins with the tight control of second messenger synthesis. In response to agonist stimulation of G protein-coupled receptors, membrane-associated adenylyl cyclases (ACs) generate cAMP that diffuses throughout the cell. The availability of cAMP activates various intracellular effectors, including protein kinase A (PKA). Specificity in PKA action is achieved by the localization of the enzyme near its substrates through association with A-kinase anchoring proteins (AKAPs). Here, we provide evidence for interactions between AKAP79/150 and ACV and ACVI. PKA anchoring facilitates the preferential phosphorylation of AC to inhibit cAMP synthesis. Real-time cellular imaging experiments show that PKA anchoring with the cAMP synthesis machinery ensures rapid termination of cAMP signaling upon activation of the kinase. This protein configuration permits the formation of a negative feedback loop that temporally regulates cAMP production.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/biosíntesis , Isoenzimas/metabolismo , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Activación Enzimática , Retroalimentación Fisiológica , Humanos , Modelos Biológicos , Fosforilación , Transducción de Señal/fisiología
4.
Nature ; 437(7058): 574-8, 2005 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16177794

RESUMEN

Cyclic adenosine 3', 5'-monophosphate (cAMP) is a ubiquitous mediator of intracellular signalling events. It acts principally through stimulation of cAMP-dependent protein kinases (PKAs) but also activates certain ion channels and guanine nucleotide exchange factors (Epacs). Metabolism of cAMP is catalysed by phosphodiesterases (PDEs). Here we identify a cAMP-responsive signalling complex maintained by the muscle-specific A-kinase anchoring protein (mAKAP) that includes PKA, PDE4D3 and Epac1. These intermolecular interactions facilitate the dissemination of distinct cAMP signals through each effector protein. Anchored PKA stimulates PDE4D3 to reduce local cAMP concentrations, whereas an mAKAP-associated ERK5 kinase module suppresses PDE4D3. PDE4D3 also functions as an adaptor protein that recruits Epac1, an exchange factor for the small GTPase Rap1, to enable cAMP-dependent attenuation of ERK5. Pharmacological and molecular manipulations of the mAKAP complex show that anchored ERK5 can induce cardiomyocyte hypertrophy. Thus, two coupled cAMP-dependent feedback loops are coordinated within the context of the mAKAP complex, suggesting that local control of cAMP signalling by AKAP proteins is more intricate than previously appreciated.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , 3',5'-AMP Cíclico Fosfodiesterasas/genética , Animales , Línea Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Citocinas/metabolismo , Humanos , Hipertrofia/inducido químicamente , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ratas
5.
Biochemistry ; 43(26): 8528-40, 2004 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-15222764

RESUMEN

The conjugation of peptides derived from the HIV TAT protein to membrane-impermeant molecules has gained wide acceptance as a means for intracellular delivery. Numerous studies have addressed the mechanism of uptake and kinetics of TAT translocation, but the cytosolic concentrations and bioavailability of the transported cargo have not been well-characterized. The current paper utilizes a microanalytical assay to perform quantitative single-cell measurements of the concentration and accessibility of peptide-based substrates for protein kinase B (PKB) and Ca(2+)/calmodulin-activated kinase II. The substrate peptide and TAT were conjugated through a releasable linker, either a disulfide or photolabile bond. Free substrate peptide concentrations of approximately 10(-20)-10(-18) moles were attainable in a cell when substrates were delivered utilizing these conjugates. The substrate peptides delivered as a disulfide conjugate were often present in the cytosol as several oxidized forms. Brief exposure of cells loaded with the photolabile conjugates to UVA light released free substrate peptide into the cytosol. Substrate peptide delivered by either conjugate was accessible to cytosolic kinase as demonstrated by the efficient phosphorylation of the peptide when the appropriate kinase was active. After incubation of the conjugated substrate with cells, free, kinase-accessible substrate was detectable in less than 30 min. Release of the majority of loaded substrate peptide from sequestered organelles occurred within 1 h. The utility of the photocleavable conjugates was demonstrated by measuring the activation of PKB in 3T3 cells after addition of varying concentrations of platelet-derived growth factor.


Asunto(s)
Productos del Gen tat/química , Fosfotransferasas/química , Animales , Transporte Biológico , Western Blotting , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Línea Celular Tumoral , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis Capilar , Activación Enzimática , Fluoresceína/farmacología , Humanos , Cinética , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células 3T3 NIH , Péptidos/química , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Temperatura , Factores de Tiempo , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA