Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 250(12): 1778-1795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34091985

RESUMEN

BACKGROUND: The growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon-bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion of fibroblast growth factor 9 (Fgf9), the DT size is notably enlarged. In this study, we explored the tissue-specific regulation of DT size using both global and targeted deletion of Fgf9. RESULTS: We showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss of Fgf9. Loss of Fgf9 during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development in Fgf9null attachments. We then showed that targeted deletion of Fgf9 in skeletal muscle leads to postnatal enlargement of the DT. CONCLUSION: Taken together, we discovered that Fgf9 may play an influential role in muscle-bone cross-talk during embryonic and postnatal development.


Asunto(s)
Enfermedades Óseas/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Músculo Esquelético/metabolismo , Tendones/patología , Animales , Animales Recién Nacidos , Desarrollo Óseo/genética , Enfermedades Óseas/patología , Condrogénesis/genética , Embrión de Mamíferos , Femenino , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Eliminación de Gen , Hipertrofia/genética , Hipertrofia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos/genética , Osteogénesis/genética , Embarazo , Tendones/embriología , Tendones/crecimiento & desarrollo , Tendones/metabolismo
2.
J Orthop Res ; 38(8): 1866-1875, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31965620

RESUMEN

Tendon rupture can occur at any age and is commonly treated nonoperatively, yet can result in persisting symptoms. Thus, a need exists to improve nonoperative treatments of injured tendons. Photobiomodulation (PBM) therapy has shown promise in the clinic and is hypothesized to stimulate mitochondrial-related metabolism and improve healing. However, the effect of PBM therapy on mitochondrial function during tendon maturation and healing are unknown, and its effect on tendon structure and function remain unclear. In this study, near-infrared light (980:810 nm blend, 2.5 J/cm2 ) was applied at low (30 mW/cm2 ) or high (300 mW/cm2 ) irradiance to unilateral Achilles tendons of CD-1 mice during postnatal growth (maturation) as well as adult mice with bilateral Achilles tenotomy (healing). The chronic effect of PBM therapy on tendon structure and function was determined using histology and mechanics, and the acute effect of PBM therapy on mitochondrial-related gene expression was assessed. During maturation and healing, collagen alignment, cell number, and nuclear shape were unaffected by chronic PBM therapy. We found a sex-dependent effect of PBM therapy during healing on mechanical outcomes (eg, increased stiffness and Young's modulus for PBM-treated females, and increased strain at ultimate stress for PBM-treated males). Mitochondria-related gene expression was marginally influenced by PBM therapy for both maturation and healing studies. This study was the first to implement PBM therapy during both growth and healing of the murine tendon. PBM therapy resulted in marginal and sex-dependent effects on the murine tendon. Clinical significance: PBM may be beneficial for tendon healing because functional remodeling improves without adverse effects.


Asunto(s)
Tendón Calcáneo/efectos de la radiación , Terapia por Luz de Baja Intensidad , Traumatismos de los Tendones/terapia , Tendón Calcáneo/crecimiento & desarrollo , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Animales , Femenino , Expresión Génica/efectos de la radiación , Masculino , Ratones , Mitocondrias/metabolismo
3.
Curr Tissue Microenviron Rep ; 1(2): 31-40, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33585822

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to describe the mechanobiological mechanisms of tendon repair as well as outline current and emerging tools in mechanobiology that might be useful for improving tendon healing and regeneration. Over 30 million musculoskeletal injuries are reported in the US per year and nearly 50% involve soft tissue injuries to tendons and ligaments. Yet current therapeutic strategies for treating tendon injuries are not always successful in regenerating and returning function of the healing tendon. RECENT FINDINGS: The use of rehabilitative strategies to control the motion and transmission of mechanical loads to repairing tendons following surgical reattachment is beneficial for some, but not all, tendon repairs. Scaffolds that are designed to recapitulate properties of developing tissues show potential to guide the mechanical and biological healing of tendon following rupture. The incorporation of biomaterials to control alignment and reintegration, as well as promote scar-less healing, are also promising. Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues may offer promising steps forward in the field of tendon regeneration. SUMMARY: The field of orthopaedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA