Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 6421, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307431

RESUMEN

Many plants associate with arbuscular mycorrhizal fungi for nutrient acquisition, while legumes also associate with nitrogen-fixing rhizobial bacteria. Both associations rely on symbiosis signaling and here we show that cereals can perceive lipochitooligosaccharides (LCOs) for activation of symbiosis signaling, surprisingly including Nod factors produced by nitrogen-fixing bacteria. However, legumes show stringent perception of specifically decorated LCOs, that is absent in cereals. LCO perception in plants is activated by nutrient starvation, through transcriptional regulation of Nodulation Signaling Pathway (NSP)1 and NSP2. These transcription factors induce expression of an LCO receptor and act through the control of strigolactone biosynthesis and the karrikin-like receptor DWARF14-LIKE. We conclude that LCO production and perception is coordinately regulated by nutrient starvation to promote engagement with mycorrhizal fungi. Our work has implications for the use of both mycorrhizal and rhizobial associations for sustainable productivity in cereals.


Asunto(s)
Medicago truncatula , Micorrizas , Rhizobium , Medicago truncatula/microbiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiología , Simbiosis , Rhizobium/metabolismo , Nutrientes
2.
G3 (Bethesda) ; 10(5): 1753-1763, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32209596

RESUMEN

The molecular interactions between tomato and Cladosporium fulvum have been an important model for molecular plant pathology. Complex genetic loci on tomato chromosomes 1 and 6 harbor genes for resistance to Cladosporium fulvum, encoding receptor like-proteins that perceive distinct Cladosporium fulvum effectors and trigger plant defenses. Here, we report classical mapping strategies for loci in tomato accessions that respond to Cladosporium fulvum effector Ecp5, which is very sequence-monomorphic. We screened 139 wild tomato accessions for an Ecp5-induced hypersensitive response, and in five accessions, the Ecp5-induced hypersensitive response segregated as a monogenic trait, mapping to distinct loci in the tomato genome. We identified at least three loci on chromosomes 1, 7 and 12 that harbor distinct Cf-Ecp5 genes in four different accessions. Our mapping showed that the Cf-Ecp5 in Solanum pimpinellifolium G1.1161 is located at the Milky Way locus. The Cf-Ecp5 in Solanum pimpinellifolium LA0722 was mapped to the bottom arm of chromosome 7, while the Cf-Ecp5 genes in Solanum lycopersicum Ontario 7522 and Solanum pimpinellifolium LA2852 were mapped to the same locus on the top arm of chromosome 12. Bi-parental crosses between accessions carrying distinct Cf-Ecp5 genes revealed putative genetically unlinked suppressors of the Ecp5-induced hypersensitive response. Our mapping also showed that Cf-11 is located on chromosome 11, close to the Cf-3 locus. The Ecp5-induced hypersensitive response is widely distributed within tomato species and is variable in strength. This novel example of convergent evolution could be used for choosing different functional Cf-Ecp5 genes according to individual plant breeding needs.


Asunto(s)
Solanum lycopersicum , Ascomicetos , Cladosporium/genética , Proteínas Fúngicas , Solanum lycopersicum/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética
3.
Plant Biotechnol J ; 17(12): 2234-2245, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31022324

RESUMEN

Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.


Asunto(s)
Grano Comestible/genética , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transgenes
4.
Science ; 352(6289): 1102-5, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230377

RESUMEN

Nuclear-associated Ca(2+) oscillations mediate plant responses to beneficial microbial partners--namely, nitrogen-fixing rhizobial bacteria that colonize roots of legumes and arbuscular mycorrhizal fungi that colonize roots of the majority of plant species. A potassium-permeable channel is known to be required for symbiotic Ca(2+) oscillations, but the calcium channels themselves have been unknown until now. We show that three cyclic nucleotide-gated channels in Medicago truncatula are required for nuclear Ca(2+) oscillations and subsequent symbiotic responses. These cyclic nucleotide-gated channels are located at the nuclear envelope and are permeable to Ca(2+) We demonstrate that the cyclic nucleotide-gated channels form a complex with the postassium-permeable channel, which modulates nuclear Ca(2+) release. These channels, like their counterparts in animal cells, might regulate multiple nuclear Ca(2+) responses to developmental and environmental conditions.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Medicago truncatula/metabolismo , Membrana Nuclear/metabolismo , Nucleótidos Cíclicos/metabolismo , Canales de Calcio/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Medicago truncatula/genética , Raíces de Plantas/metabolismo , Canales de Potasio/metabolismo , Simbiosis
5.
Plant J ; 87(6): 597-605, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27232938

RESUMEN

Variation in flowering time and response to overwintering has been exploited to breed brassica vegetables that can be harvested year-round. Our knowledge of flowering time control now enables the investigation of the molecular basis of this important variation. Here, we show that a major determinant of heading date variation in Brassica oleracea is from variation in vernalization response through allelic variation at FLOWERING LOCUS C.C2 (BoFLC4). We characterize two alleles of BoFLC.C2 that are both functional and confer a requirement for vernalization, but they show distinct expression dynamics in response to cold. Complementation experiments in Arabidopsis thaliana revealed that the allelic variation results from cis polymorphism at BoFLC.C2, which quantitatively influences the degree of cold-induced epigenetic silencing. This results in one allelic variant conferring consistently later heading under both glasshouse and field conditions through reduced environmental sensitivity. Our results suggest that breeding of brassica varieties for commercially valuable variation in heading date has been achieved through the selection of cis polymorphism at FLC, similar to that underpinning natural variation in A. thaliana. This understanding will allow for the selection of alleles with distinct sensitivities to cold and robust heading dates under variable climatic conditions, and will facilitate the breeding of varieties more resistant to climate change.


Asunto(s)
Brassica/genética , Flores/fisiología , Polimorfismo Genético , Arabidopsis , Proteínas de Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo
6.
Mol Breed ; 33: 349-362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489479

RESUMEN

Many important plant species have polyploidy in their recent ancestry, complicating inferences about the genetic basis of trait variation. Although the principal locus controlling the proportion of polyunsaturated fatty acids (PUFAs) in seeds of Arabidopsis thaliana is known (fatty acid desaturase 2; FAD2), commercial cultivars of a related crop, oilseed rape (Brassica napus), with very low PUFA content have yet to be developed. We showed that a cultivar of oilseed rape with lower than usual PUFA content has non-functional alleles at three of the four orthologous FAD2 loci. To explore the genetic basis further, we developed an ethyl methanesulphonate mutagenised population, JBnaCAB_E, and used it to identify lines that also carried mutations in the remaining functional copy. This confirmed the hypothesised basis of variation, resulting in an allelic series of mutant lines showing a spectrum of PUFA contents of seed oil. Several lines had PUFA content of ~6 % and oleic acid content of ~84 %, achieving a long-standing industry objective: very high oleic, very low PUFA rapeseed without the use of genetic modification technology. The population contains a high rate of mutations and represents an important resource for research in B. napus.

7.
BMC Plant Biol ; 13: 111, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23915099

RESUMEN

BACKGROUND: The detection and exploitation of genetic variation underpins crop improvement. However, the polyploid nature of the genomes of many of our most important crops represents a barrier, particularly for the analysis of variation within genes. To overcome this, we aimed to develop methodologies based on amplicon sequencing that involve the incorporation of barcoded amplification tags (BATs) into PCR products. RESULTS: A protocol was developed to tag PCR products with 5' 6-base oligonucleotide barcode extensions before pooling for sequencing library production using standard Illumina adapters. A computational method was developed for the de-convolution of products and the robust detection and scoring of sequence variants. Using this methodology, amplicons targeted to gene sequences were screened across a B. napus mapping population and the resulting allele scoring strings for 24 markers linkage mapped to the expected regions of the genome. Furthermore, using one-dimensional 8-fold pooling, 4608 lines of a B. napus mutation population were screened for induced mutations in a locus-specific amplicon (an orthologue of GL2.b) and mixed product of three co-amplified loci (orthologues of FAD2), identifying 10 and 41 mutants respectively. CONCLUSIONS: The utilisation of barcode tags to de-convolute pooled PCR products in multiplexed, variation screening via Illumina sequencing provides a cost effective method for SNP genotyping and mutation detection and, potentially, markers for causative changes, even in polyploid species. Combining this approach with existing Illumina multiplexing workflows allows the analysis of thousands of lines cheaply and efficiently in a single sequencing run with minimal library production costs.


Asunto(s)
Brassica napus/genética , Variación Genética , Poliploidía , Análisis de Secuencia de ADN/métodos , Productos Agrícolas/genética , Ligamiento Genético , Genoma de Planta , Genotipo , Mutación , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple
8.
BMC Plant Biol ; 12: 21, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22333192

RESUMEN

BACKGROUND: Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. RESULTS: We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. CONCLUSIONS: We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus.


Asunto(s)
Alelos , Brassica/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis , Brassica/crecimiento & desarrollo , Mapeo Cromosómico , Clonación Molecular , ADN de Plantas/genética , Flores/genética , Genoma de Planta , Genotipo , Datos de Secuencia Molecular , Polimorfismo Genético , Regiones Promotoras Genéticas , Recombinación Genética , Análisis de Secuencia de ADN , Sintenía
9.
Nat Genet ; 43(10): 1035-9, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21873998

RESUMEN

We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.


Asunto(s)
Brassica rapa/genética , Genoma de Planta , Poliploidía , Arabidopsis/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Mapeo Contig , Evolución Molecular , Duplicación de Gen , Genes de Plantas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
10.
Genome Biol ; 11(9): R94, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20875114

RESUMEN

BACKGROUND: The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will be used to accelerate both basic research on genome evolution and applied research across the cultivated Brassica species. RESULTS: We have determined and analyzed the sequence of B. rapa chromosome A3. We obtained 31.9 Mb of sequences, organized into nine contigs, which incorporated 348 overlapping BAC clones. Annotation revealed 7,058 protein-coding genes, with an average gene density of 4.6 kb per gene. Analysis of chromosome collinearity with the A. thaliana genome identified conserved synteny blocks encompassing the whole of the B. rapa chromosome A3 and sections of four A. thaliana chromosomes. The frequency of tandem duplication of genes differed between the conserved genome segments in B. rapa and A. thaliana, indicating differential rates of occurrence/retention of such duplicate copies of genes. Analysis of 'ancestral karyotype' genome building blocks enabled the development of a hypothetical model for the derivation of the B. rapa chromosome A3. CONCLUSIONS: We report the near-complete chromosome sequence from a dicotyledonous crop species. This provides an example of the complexity of genome evolution following polyploidy. The high degree of contiguity afforded by the clone-by-clone approach provides a benchmark for the performance of whole genome shotgun approaches presently being applied in B. rapa and other species with complex genomes.


Asunto(s)
Brassica rapa/genética , Cromosomas de las Plantas , Secuencia Conservada , Análisis de Secuencia de ADN , Sintenía , Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Estructuras Cromosómicas , Cromosomas Artificiales Bacterianos , Mapeo Contig , ADN de Plantas/genética , Evolución Molecular , Duplicación de Gen , Reordenamiento Génico , Genoma de Planta , Cariotipificación , Anotación de Secuencia Molecular , Poliploidía
11.
BMC Genomics ; 10: 539, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19922648

RESUMEN

BACKGROUND: The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental rearrangement, but these have not been validated at the sequence level. RESULTS: We developed computational tools to analyse the public collection of B. rapa BAC end sequence, in order to identify candidates for representing collinearity discontinuities between the genomes of B. rapa and A. thaliana. For each putative discontinuity, one of the BACs was sequenced and analysed for collinearity with the genome of A. thaliana. Additional BAC clones were identified and sequenced as part of ongoing efforts to sequence four chromosomes of B. rapa. Strikingly few of the 19 inter-chromosomal rearrangements corresponded to the set of collinearity discontinuities anticipated on the basis of previous studies. Our analyses revealed numerous instances of newly detected collinearity blocks. For B. rapa linkage group A8, we were able to develop a model for the derivation of the chromosome from the ancestral karyotype. We were also able to identify a rearrangement event in the ancestor of B. rapa that was not shared with the ancestor of A. thaliana, and is represented in triplicate in the B. rapa genome. In addition to inter-chromosomal rearrangements, we identified and analysed 32 BACs containing the end points of segmental inversion events. CONCLUSION: Our results show that previous studies of segmental collinearity between the A. thaliana, Brassica and ancestral karyotype genomes, although very useful, represent over-simplifications of their true relationships. The presence of numerous cryptic collinear genome segments and the frequent occurrence of segmental inversions mean that inference of the positions of genes in B. rapa based on the locations of orthologues in A. thaliana can be misleading. Our results will be of relevance to a wide range of plants that have polyploid genomes, many of which are being considered according to a paradigm of comprising conserved synteny blocks with respect to sequenced, related genomes.


Asunto(s)
Brassica rapa/genética , Evolución Molecular , Genoma de Planta/genética , Genómica , Arabidopsis/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Clonación Molecular , ADN de Plantas/genética , Reordenamiento Génico , Cariotipificación , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
12.
Theor Appl Genet ; 115(8): 1127-36, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17874062

RESUMEN

The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an excellent model to study gene-for-gene interactions and plant disease resistance gene evolution. Most Cf genes were introgressed into cultivated tomato (Solanum lycopersicum) from wild relatives such as S. pimpinellifolium and novel Cf-ECP genes were recently identified in this species. Our objective is to isolate Cf-ECP1, Cf-ECP2, Cf-ECP4 and Cf-ECP5 to increase our understanding of Cf gene evolution, and the molecular basis for recognition specificity in Cf proteins. The map locations of Cf-ECP2 and Cf-ECP5 have been reported previously and we report here that Cf-ECP1 and Cf-ECP4 map to a different locus on the short arm of chromosome 1. The analysis of selected recombinants and allelism tests showed both genes are located at Milky Way together with Cf-9 and Cf-4. Our results emphasise the importance of this locus in generating novel Cf genes for resistance to C. fulvum. Candidate genes for Cf-ECP1 and Cf-ECP4 were also identified by DNA gel blot analysis of bulked segregant pools. In addition, we generated functional cassettes for expression of the C. fulvum ECP1, ECP2, ECP4 and ECP5 proteins using recombinant Potato Virus X, and three ECPs were also expressed in stable transformed plants. Using marker-assisted selection we have also identified recombinants containing Cf-ECP1, Cf-ECP2, Cf-ECP4 or Cf-ECP5 in cis with a linked T-DNA carrying the non-autonomous Zea mays transposon Dissociation. Using these resources it should now be possible to isolate all four Cf-ECPs using transposon tagging, or a candidate gene strategy.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas , Enfermedades de las Plantas/microbiología , Solanum/genética , Solanum/microbiología , Secuencia de Aminoácidos , Secuencia de Bases , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidad , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Vectores Genéticos , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Potexvirus , Solanum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA