Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588339

RESUMEN

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Asunto(s)
Herpes Zóster , Herpesvirus Humano 3 , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Humanos , Herpes Zóster/inmunología , Herpes Zóster/virología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Activación de Linfocitos/inmunología , Herpesvirus Humano 3/inmunología , Femenino , Persona de Mediana Edad , Masculino , Linfocitos T CD4-Positivos/inmunología , Anciano , Adulto , Epítopos de Linfocito T/inmunología
2.
Hum Gene Ther ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38420654

RESUMEN

Liver injury with concomitant loss of therapeutic transgene expression can be a clinical sequela of systemic administration of recombinant adeno-associated virus (rAAV) when used for gene therapy, and a significant barrier to treatment efficacy. Despite this, it has been difficult to replicate this phenotype in preclinical models, thereby limiting the field's ability to systematically investigate underlying biological mechanisms and develop interventions. Prior animal models have focused on capsid and transgene-related immunogenicity, but the impact of concurrently present nontransgene or vector antigens on therapeutic efficacy, such as those derived from contaminating nucleic acids within rAAV preps, has yet to be investigated. In this study, using Ad5-CMV_GFP-immunized immunocompetent BALB/cJ mice, and a coagulation factor VIII expressing rAAV preparation that contains green flourescent protein (GFP) cDNA packaged as P5-associated contaminants, we establish a model to induce transaminitis and observe concomitant therapeutic efficacy reduction after rAAV administration. We observed strong epitope-specific anti-GFP responses in splenic CD8+ T cells when GFP cDNA was delivered as a P5-associated contaminant of rAAV, which coincided and correlated with alanine and aspartate aminotransferase elevations. Furthermore, we report a significant reduction in detectable circulating FVIII protein, as compared with control mice. Lastly, we observed an elevation in the detection of AAV8 capsid-specific T cells when GFP was delivered either as a contaminant or transgene to Ad5-CMV_GFP-immunized mice. We present this model as a potential tool to study the underlying biology of post-AAV hepatotoxicity and demonstrate the potential for T cell responses against proteins produced from AAV encapsidated nontherapeutic nucleic acids, to interfere with efficacious gene transfer.

3.
Elife ; 132024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38275224

RESUMEN

Analysis of pre-existing immunity and its effects on acute infection often focus on memory responses associated with a prior infectious exposure. However, memory responses occur in the context of the overall immune state and leukocytes must interact with their microenvironment and other immune cells. Thus, it is important to also consider non-antigen-specific factors which shape the composite basal state and functional capacity of the immune system, termed here as I0 ('I naught'). In this review, we discuss the determinants of I0. Utilizing influenza virus as a model, we then consider the effect of I0 on susceptibility to infection and disease severity. Lastly, we outline a mathematical framework and demonstrate how researchers can build and tailor models to specific needs. Understanding how diverse factors uniquely and collectively impact immune competence will provide valuable insights into mechanisms of immune variation, aid in screening for high-risk populations, and promote the development of broadly applicable prophylactic and therapeutic treatments.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Humanos , Anticuerpos Antivirales
4.
Sci Rep ; 13(1): 17820, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857783

RESUMEN

SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection.


Asunto(s)
COVID-19 , Inmunidad Mucosa , Humanos , SARS-CoV-2 , Mucosa Nasal/metabolismo , Vacunación , Inmunoglobulina A , Citocinas/metabolismo , Inmunoglobulina G , Anticuerpos Antivirales
5.
Immunohorizons ; 7(10): 635-651, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819998

RESUMEN

Spike-encoding mRNA vaccines in early 2021 effectively reduced SARS-CoV-2-associated morbidity and mortality. New booster regimens were introduced due to successive waves of distinct viral variants. Therefore, people now have a diverse immune memory resulting from multiple SARS-CoV-2 Ag exposures, from infection to following vaccination. This level of community-wide immunity can induce immunological protection from SARS-CoV-2; however, questions about the trajectory of the adaptive immune responses and long-term immunity with respect to priming and repeated Ag exposure remain poorly explored. In this study, we examined the trajectory of adaptive immune responses following three doses of monovalent Pfizer BNT162b2 mRNA vaccination in immunologically naive and SARS-CoV-2 preimmune individuals without the occurrence of breakthrough infection. The IgG, B cell, and T cell Spike-specific responses were assessed in human blood samples collected at six time points between a moment before vaccination and up to 6 mo after the third immunization. Overall, the impact of repeated Spike exposures had a lower improvement on T cell frequency and longevity compared with IgG responses. Natural infection shaped the responses following the initial vaccination by significantly increasing neutralizing Abs and specific CD4+ T cell subsets (circulating T follicular helper, effector memory, and Th1-producing cells), but it had a small benefit at long-term immunity. At the end of the three-dose vaccination regimen, both SARS-CoV-2-naive and preimmune individuals had similar immune memory quality and quantity. This study provides insights into the durability of mRNA vaccine-induced immunological memory and the effects of preimmunity on long-term responses.


Asunto(s)
Vacuna BNT162 , COVID-19 , Vacunas de ARNm , Humanos , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , Inmunoglobulina G/inmunología , Vacunas de ARNm/inmunología , SARS-CoV-2 , Vacunas Sintéticas/inmunología , Inmunogenicidad Vacunal/inmunología , Eficacia de las Vacunas , Inmunización Secundaria , Subgrupos Linfocitarios/inmunología
6.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
7.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37503213

RESUMEN

SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ markedly between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections to understand the correlates of disease severity and immune memory. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection. Teaser: A nasopharyngeal swab can be used to study the intranasal immune response and yields much more information than a simple viral diagnosis.

8.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461683

RESUMEN

Previous studies have identified cytokines associated with respiratory virus infection illness outcome. However, few studies have included comprehensive cytokine panels, longitudinal analyses, and/or simultaneous assessment across the severity spectrum. This, coupled with subjective definitions of cytokine storm syndrome (CSS), have contributed to inconsistent findings of cytokine signatures, particularly with COVID severity. Here, we measured 38 plasma cytokines and compared profiles in healthy, SARS-CoV-2 infected, and multisystem inflammatory syndrome in children (MIS-C) patients (n = 169). Infected patients spanned the severity spectrum and were classified as Asymptomatic, Mild, Moderate or Severe. Our results showed acute cytokine profiles and longitudinal dynamics of IL1Ra, IL10, MIP1b, and IP10 can differentiate COVID severity groups. Only 4% of acutely infected patients exhibited hypercytokinemia. Of these subjects, 3 were Mild, 3 Moderate, and 1 Severe, highlighting the lack of association between CSS and COVID severity. Additionally, we identified IL1Ra and TNFa as potential biomarkers for patients at high risk for long COVID. Lastly, we compare hypercytokinemia profiles across COVID and influenza patients and show distinct elevated cytokine signatures, wherein influenza induces the most elevated cytokine profile. Together, these results identify key analytes that, if obtained at early time points, can predict COVID illness outcome and/or risk of complications, and provide novel insight for improving the conceptual framework of hypercytokinemia, wherein CSS is a subgroup that requires concomitant severe clinical manifestations, and including a list of cytokines that can distinguish between subtypes of hypercytokinemia.

9.
bioRxiv ; 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36993205

RESUMEN

Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.

10.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315770

RESUMEN

Every T cell receptor (TCR) repertoire is shaped by a complex probabilistic tangle of genetically determined biases and immune exposures. T cells combine a random V(D)J recombination process with a selection process to generate highly diverse and functional TCRs. The extent to which an individual's genetic background is associated with their resulting TCR repertoire diversity has yet to be fully explored. Using a previously published repertoire sequencing dataset paired with high-resolution genome-wide genotyping from a large human cohort, we infer specific genetic loci associated with V(D)J recombination probabilities using genome-wide association inference. We show that V(D)J gene usage profiles are associated with variation in the TCRB locus and, specifically for the functional TCR repertoire, variation in the major histocompatibility complex locus. Further, we identify specific variations in the genes encoding the Artemis protein and the TdT protein to be associated with biasing junctional nucleotide deletion and N-insertion, respectively. These results refine our understanding of genetically-determined TCR repertoire biases by confirming and extending previous studies on the genetic determinants of V(D)J gene usage and providing the first examples of trans genetic variants which are associated with modifying junctional diversity. Together, these insights lay the groundwork for further explorations into how immune responses vary between individuals.


Asunto(s)
Estudio de Asociación del Genoma Completo , Recombinación V(D)J , Sitios Genéticos , Genotipo , Humanos , Probabilidad , Receptores de Antígenos de Linfocitos T/genética , Recombinación V(D)J/genética
11.
Mol Ther Methods Clin Dev ; 24: 280-291, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35211640

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors are increasingly being used for clinical gene transfer and have shown great potential for the treatment of several monogenic disorders. However, contaminant DNA from producer plasmids can be packaged into rAAV alongside the intended expression cassette-containing vector genome. The consequences of this are unknown. Our analysis of rAAV preps revealed abundant contaminant sequences upstream of the AAV replication (Rep) protein driving promoter, P5, on the Rep-Cap producer plasmid. Characterization of P5-associated contaminants after infection showed transfer, persistence, and transcriptional activity in AAV-transduced murine hepatocytes, in addition to in vitro evidence suggestive of integration. These contaminants can also be efficiently translated and immunogenic, revealing previously unrecognized side effects of rAAV-mediated gene transfer. P5-associated contaminant packaging and activity were independent of an inverted terminal repeat (ITR)-flanked vector genome. To prevent incorporation of these potentially harmful sequences, we constructed a modified P5-promoter (P5-HS), inserting a DNA spacer between an Rep binding site and an Rep nicking site in P5. This prevented upstream DNA contamination regardless of transgene or AAV serotype, while maintaining vector yield. Thus, we have constructed an rAAV production plasmid that improves vector purity and can be implemented across clinical rAAV applications. These findings represent new vector safety and production considerations for rAAV gene therapy.

12.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074048

RESUMEN

Antigen recognition through the T cell receptor (TCR) αß heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRß repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRß sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination.


Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals' memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Hepatitis B/prevención & control , Adulto , Vacunas contra Hepatitis B , Humanos , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta , Vacunación , Adulto Joven
13.
Nat Biotechnol ; 40(1): 54-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34426704

RESUMEN

Links between T cell clonotypes, as defined by T cell receptor (TCR) sequences, and phenotype, as reflected in gene expression (GEX) profiles, surface protein expression and peptide:major histocompatibility complex binding, can reveal functional relationships beyond the features shared by clonally related cells. Here we present clonotype neighbor graph analysis (CoNGA), a graph theoretic approach that identifies correlations between GEX profile and TCR sequence through statistical analysis of GEX and TCR similarity graphs. Using CoNGA, we uncovered associations between TCR sequence and GEX profiles that include a previously undescribed 'natural lymphocyte' population of human circulating CD8+ T cells and a set of TCR sequence determinants of differentiation in thymocytes. These examples show that CoNGA might help elucidate complex relationships between TCR sequence and T cell phenotype in large, heterogeneous, single-cell datasets.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética
14.
Elife ; 102021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34845983

RESUMEN

T-cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages experimentally inferred antigen-associated TCRs to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly quantify functionally similar TCRs in bulk repertoires across individuals. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the SARS-CoV-2 antigen-associated TCRs that have strong evidence of restriction to patients with a specific human leukocyte antigen (HLA) genotype. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (false discovery rate [FDR]<0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.


Asunto(s)
Antígenos Virales/genética , COVID-19/inmunología , Antígenos HLA/genética , Receptores de Antígenos de Linfocitos T/genética , SARS-CoV-2/inmunología , Antígenos Virales/inmunología , Biomarcadores , COVID-19/genética , Regiones Determinantes de Complementariedad/inmunología , Biología Computacional/métodos , Epítopos/genética , Epítopos/inmunología , Genotipo , Antígenos HLA/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología
15.
bioRxiv ; 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33398288

RESUMEN

As the mechanistic basis of adaptive cellular antigen recognition, T cell receptors (TCRs) encode clinically valuable information that reflects prior antigen exposure and potential future response. However, despite advances in deep repertoire sequencing, enormous TCR diversity complicates the use of TCR clonotypes as clinical biomarkers. We propose a new framework that leverages antigen-enriched repertoires to form meta-clonotypes - groups of biochemically similar TCRs - that can be used to robustly identify and quantify functionally similar TCRs in bulk repertoires. We apply the framework to TCR data from COVID-19 patients, generating 1831 public TCR meta-clonotypes from the 17 SARS-CoV-2 antigen-enriched repertoires with the strongest evidence of HLA-restriction. Applied to independent cohorts, meta-clonotypes targeting these specific epitopes were more frequently detected in bulk repertoires compared to exact amino acid matches, and 59.7% (1093/1831) were more abundant among COVID-19 patients that expressed the putative restricting HLA allele (FDR < 0.01), demonstrating the potential utility of meta-clonotypes as antigen-specific features for biomarker development. To enable further applications, we developed an open-source software package, tcrdist3, that implements this framework and facilitates flexible workflows for distance-based TCR repertoire analysis.

16.
Sci Adv ; 6(50)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33187979

RESUMEN

We pursued a study of immune responses in coronavirus disease 2019 (COVID-19) and influenza patients. Compared to patients with influenza, patients with COVID-19 exhibited largely equivalent lymphocyte counts, fewer monocytes, and lower surface human leukocyte antigen (HLA)-class II expression on selected monocyte populations. Furthermore, decreased HLA-DR on intermediate monocytes predicted severe COVID-19 disease. In contrast to prevailing assumptions, very few (7 of 168) patients with COVID-19 exhibited cytokine profiles indicative of cytokine storm syndrome. After controlling for multiple factors including age and sample time point, patients with COVID-19 exhibited lower cytokine levels than patients with influenza. Up-regulation of IL-6, G-CSF, IL-1RA, and MCP1 predicted death in patients with COVID-19 but were not statistically higher than patients with influenza. Single-cell transcriptional profiling revealed profound suppression of interferon signaling among patients with COVID-19. When considered across the spectrum of peripheral immune profiles, patients with COVID-19 are less inflamed than patients with influenza.


Asunto(s)
COVID-19/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/inmunología , Inflamación/inmunología , Gripe Humana/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/genética , Células Cultivadas , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diagnóstico Diferencial , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación/genética , Gripe Humana/diagnóstico , Gripe Humana/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
17.
Am J Respir Cell Mol Biol ; 63(3): 349-361, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32551899

RESUMEN

Allogeneic hematopoietic cell-transplant (alloHCT) recipients are at increased risk of complications from viral respiratory-tract infections (vRTIs). We measured cytokine concentrations in nasal washes (NWs) from pediatric alloHCT recipients to better understand their local response to vRTI. Forty-one immunologic analytes were measured in 70 NWs, collected during and after vRTI, from 15 alloHCT recipients (median age, 11 yr) with 19 episodes of vRTI. These were compared with NW cytokine concentrations from an independent group of otherwise healthy patients. AlloHCT recipients are able to produce a local response to vRTI and produce IFN-α2 and IL-12p40 in significant quantities above an uninfected baseline early in infection. Compared with otherwise healthy comparator-group patients, alloHCT recipients have higher NW concentrations of IL-4 when challenged with vRTI. Further study of these immunologic analytes as well as of type 1 versus type 2 balance in the respiratory mucosa in the context of vRTI during immune reconstitution may be of future research interest in this vulnerable patient population.


Asunto(s)
Citocinas/metabolismo , Trasplante de Células Madre Hematopoyéticas , Receptores de Trasplantes , Trasplante Homólogo , Adolescente , Niño , Preescolar , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Lactante , Infecciones/etiología , Infecciones/metabolismo , Masculino , Líquido del Lavado Nasal/citología , Trasplante Homólogo/efectos adversos
18.
medRxiv ; 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32511543

RESUMEN

Coronavirus disease 2019 (COVID-19) is characterized by a high incidence of acute respiratory failure. The underlying immunopathology of that failure and how it compares to other causes of severe respiratory distress, such as influenza virus infection, are not fully understood. Here we addressed this by developing a prospective observational cohort of COVID-19 and influenza subjects with varying degrees of disease severity and assessing the quality and magnitude of their immune responses at the cellular and protein level. Additionally, we performed single-cell RNA transcriptional profiling of peripheral blood mononuclear cells from select subjects. The cohort consists of 79 COVID-19 subjects, 26 influenza subjects, and 15 control subjects, including 35 COVID-19 and 7 influenza subjects with acute respiratory failure. While COVID-19 subjects exhibited largely equivalent or greater activated lymphocyte counts compared to influenza subjects, they had fewer monocytes and lower surface HLA-class II expression on monocytes compared to influenza subjects and controls. At least two distinct immune profiles were observed by cytokine levels in severe COVID-19 patients: 3 of 71 patients were characterized by extreme inflammation, with greater than or equal to ~50% of the 35 cytokines measured greater than 2 standard deviations from the mean level of other severe patients (both influenza and COVID-19); the other immune profile, which characterized 68 of 71 subjects, had a mixed inflammatory signature, where 28 of 35 cytokines in COVID-19 patients had lower mean cytokine levels, though not all were statistically significant. Only 2 cytokines were higher in COVID-19 subjects compared to influenza subjects (IL-6 and IL-8). Influenza and COVID-19 patients could be distinguished statistically based on cytokine module expression, particularly after controlling for the significant effects of age on cytokine expression, but again with lower levels of most cytokines in COVID-19 subjects. Further, high circulating levels of IL-1RA and IL-6 were associated with increased odds of intubation in the combined influenza and COVID-19 cohort [OR = 3.93 and 4.30, respectively] as well as among only COVID-19 patients. Single cell transcriptional profiling of COVID-19 and influenza subjects with respiratory failure identified profound suppression in type I and type II interferon signaling in COVID-19 patients across multiple clusters. In contrast, COVID-19 cell clusters were enriched for alterations in metabolic, stress, and apoptotic pathways. These alterations were consistent with an increased glucocorticoid response in COVID-19 patients compared to influenza. When considered across the spectrum of innate and adaptive immune profiles, the immune pathologies underlying severe influenza and COVID-19 are substantially distinct. The majority of COVID-19 patients with acute respiratory failure do not have a cytokine storm phenotype but instead exhibit profound type I and type II IFN immunosuppression when compared to patients with acute influenza. Upregulation of a small number of inflammatory mediators, including IL-6, predicts acute respiratory failure in both COVID-19 and influenza patients.

19.
Front Immunol ; 9: 1071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872429

RESUMEN

Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus's ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad , Gripe Humana/inmunología , Gripe Humana/virología , Orthomyxoviridae/inmunología , Animales , Coinfección , Reacciones Cruzadas/inmunología , Humanos , Inmunidad Celular , Inmunidad Humoral , Memoria Inmunológica , Linfocitos T/inmunología , Linfocitos T/metabolismo
20.
Geroscience ; 39(3): 293-303, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28647907

RESUMEN

Approximately 50% of individuals aged 6-49 years in the United States are infected with cytomegalovirus (CMV), with seroprevalence increasing with age, reaching 85-90% by 75-80 years according to Bate et al. (Clin Infect Dis 50 (11): 1439-1447, 2010) and Pawelec et al. (Curr Opin Immunol 24:507-511, 2012). Following primary infection, CMV establishes lifelong latency with periodic reactivation. Immunocompetent hosts experience largely asymptomatic infection, but CMV can cause serious illness in immunocompromised populations, such as transplant patients and the elderly. Control of CMV requires constant immune surveillance, and recent discoveries suggest this demand alters general features of the immune system in infected individuals. Here, we review recent advances in the understanding of the immune response to CMV and the role of CMV in immune aging and fitness, while highlighting the importance of potential confounding factors that influence CMV studies. Understanding how CMV contributes to shaping "baseline" immunity has important implications for a host's ability to mount effective responses to diverse infections and vaccination.


Asunto(s)
Envejecimiento/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Herpes Simple/inmunología , Simplexvirus/inmunología , Inmunidad Adaptativa/inmunología , Coinfección , Congresos como Asunto , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/epidemiología , Herpes Simple/complicaciones , Herpes Simple/epidemiología , Humanos , Huésped Inmunocomprometido/inmunología , Factores de Riesgo , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA