Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 269: 116287, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492334

RESUMEN

In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.


Asunto(s)
Antineoplásicos , Quinolinas , Quinolinas/farmacología , Quinolinas/metabolismo , Pirroles/farmacología , Ciclo Celular , Apoptosis , Antineoplásicos/farmacología
2.
Toxicol Lett ; 387: 63-75, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778463

RESUMEN

Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.


Asunto(s)
Receptores de Hidrocarburo de Aril , Receptores de Esteroides , Humanos , Receptor X de Pregnano/genética , Células CACO-2 , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/farmacología , Triptaminas/farmacología , Receptores de Esteroides/metabolismo
3.
Nat Commun ; 14(1): 2728, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169746

RESUMEN

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Receptores de Hidrocarburo de Aril , Piel , Animales , Femenino , Ratones , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Citocromo P-450 CYP1A1/genética , Ligandos , Regiones Promotoras Genéticas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
4.
J Org Chem ; 88(5): 3228-3237, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797215

RESUMEN

Immobilized l-glutamic acid ß-methyl ester was sulfonylated with 4-nitrobenzenesulfonyl chloride and alkylated with various α-haloketones. The resulting sulfonamides were reacted with potassium trimethylsilanolate. Then, upon cleavage from the polymer support, tetrasubstituted pyridines were produced as the result of one-step C-arylation, aldol condensation, and oxidation. When cleavage from the resin occurred before the trimethylsilanolate treatment, C-arylation was followed by enamination, which yielded trisubstituted pyrazines. Through the developed protocols, targeted synthesis of novel heterocyclic derivatives was performed using mild reaction conditions and a number of readily available starting materials.

5.
Eur J Med Chem ; 243: 114792, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36191408

RESUMEN

Oncogenic mutations in gene encoding FLT3 kinase are often detected in acute myeloid leukaemia (AML) patients, and several potent kinase inhibitors have been developed. However, the FLT3 inhibitor treatment often leads to the resistance development and subsequent relapse. Targeted degradation of oncogenic protein kinases has emerged as a feasible pharmacological strategy, providing more robust effect over traditional competitive inhibitors. Based on previously developed competitive inhibitor of FLT3 and CDK9, we have designed and prepared a novel pomalidomide-based PROTAC. A series of biochemical and cellular experiments showed selectivity towards FLT3-ITD bearing AML cells and confirmed proteasome-dependent mechanism of action. Dual FLT3-ITD and CDK9 protein degradation resulted in the block of FLT3-ITD downstream signalling pathways, apoptosis activation and cell cycle arrest of FLT3-ITD AML cells. Moreover, transcriptional repression caused by CDK9 degradation significantly reduced expression of crucial genes involved in AML pathogenesis. The obtained results indicate the beneficial impact of simultaneous FLT3-ITD/CDK9 degradation for AML therapy.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Apoptosis , Quinasa 9 Dependiente de la Ciclina/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Leucemia Mieloide Aguda/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteolisis
6.
Org Biomol Chem ; 20(18): 3811-3816, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35467690

RESUMEN

Immobilized L-aspartic acid beta-methyl ester (Fmoc-Asp(OMe)-OH) was reacted with 4-nitrobenzenesulfonyl chloride, followed by alkylation with various α-haloketones. The resulting intermediates were treated with potassium trimethylsilanolate, which yielded tetrasubstituted pyrroles after a one-step transformation consisting of sequential C-arylation, aldol condensation and spontaneous aromatization. The discovered synthetic strategy enables fast and simple access to pentasubstituted and functionalized pyrroles from a number of readily available starting materials.


Asunto(s)
Ésteres , Pirroles , Alquilación , Ácido Aspártico , Ciclización
7.
J Org Chem ; 87(8): 5242-5256, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35344355

RESUMEN

Herein, we report a multistep synthesis of polycyclic tetrahydroisoquinolines and tetrahydrobenzo[d]azepines starting from Wang resin-immobilized allylglycine. After sulfonylation with 2/4-nitrobenzenesulfonyl chlorides, Mitsunobu alkylation with various phenylalkynols yielded the corresponding (phenylprop-2-yn-1-yl)-sulfonamides. "Interior" ring-closure enyne metathesis (RCEM) using a Grubbs catalyst second generation (Ru2) yielded functionalized tetrahydroisoquinoline/tetrahydrobenzo[d]azepine intermediates. "East-side" [4 + 2] cycloaddition with representative dienophiles was followed by the "west-side" construction of different heterocycles using various electrophiles to finally furnish a set of novel molecular frameworks bearing fused [6 + 6] or [6 + 7] rings. The developed methodology enables the facile parallel synthesis of novel, pharmacologically promising compounds derived from privileged scaffolds.


Asunto(s)
Azepinas , Tetrahidroisoquinolinas , Alilglicina , Ciclización , Polímeros
8.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299008

RESUMEN

Angiogenesis has a pivotal role in tumor growth and the metastatic process. Molecular imaging was shown to be useful for imaging of tumor-induced angiogenesis. A great variety of radiolabeled peptides have been developed to target αvß3 integrin, a target structure involved in the tumor-induced angiogenic process. The presented study aimed to synthesize deferoxamine (DFO)-based c(RGD) peptide conjugate for radiolabeling with gallium-68 and perform its basic preclinical characterization including testing of its tumor-imaging potential. DFO-c(RGDyK) was labeled with gallium-68 with high radiochemical purity. In vitro characterization including stability, partition coefficient, protein binding determination, tumor cell uptake assays, and ex vivo biodistribution as well as PET/CT imaging was performed. [68Ga]Ga-DFO-c(RGDyK) showed hydrophilic properties, high stability in PBS and human serum, and specific uptake in U-87 MG and M21 tumor cell lines in vitro and in vivo. We have shown here that [68Ga]Ga-DFO-c(RGDyK) can be used for αvß3 integrin targeting, allowing imaging of tumor-induced angiogenesis by positron emission tomography.


Asunto(s)
Deferoxamina/química , Radioisótopos de Galio/química , Glioblastoma/diagnóstico por imagen , Integrina alfaVbeta3/metabolismo , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular Tumoral , Deferoxamina/análogos & derivados , Deferoxamina/síntesis química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Tisular , Tomografía Computarizada por Rayos X/métodos , Trasplante Heterólogo
9.
J Org Chem ; 86(12): 7963-7974, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34060832

RESUMEN

Herein, we report the synthesis of skeletally different triazolo[1,5-a][1,4]diazepines starting from immobilized homoazidoalanine. After sulfonylation with 2/4-nitrobenzenesulfonyl chlorides and Mitsunobu alkylation with various alkynols, the corresponding N-substituted nitrobenzenesulfonamides were obtained. Their catalyst-free Huisgen cycloaddition provided immobilized and functionalized triazolo[1,5-a][1,4]diazepines as the key intermediates for further modification. Using the concept of diversity-oriented, reagent-based synthesis, the key intermediates were subsequently converted to heterocycles bearing [5 + 7 + 5], [5 + 7 + 6], and [5 + 7 + 7] scaffolds. Furthermore, the synthesis of spirocyclic triazolodiazepines was developed.


Asunto(s)
Azepinas , Polímeros , Alquilación , Indicadores y Reactivos , Estructura Molecular
10.
J Med Chem ; 64(2): 1180-1196, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33439019

RESUMEN

G-protein coupled receptors (GPCRs) exist in an equilibrium of multiple conformational states, including different active states, which depend on the nature of the bound ligand. In consequence, different conformational states can initiate specific signal transduction pathways. The study identified compound 7e, which acts as a potent 5-hydroxytryptamine type 6 receptor (5-HT6R) neutral antagonist at Gs and does not impact neurite growth (process controlled by Cdk5). MD simulations highlighted receptor conformational changes for 7e and inverse agonist PZ-1444. In cell-based assays, neutral antagonists of the 5-HT6R (7e and CPPQ), but not inverse agonists (SB-258585, intepirdine, PZ-1444), displayed glioprotective properties against 6-hydroxydopamine-induced and doxorubicin-induced cytotoxicity. These suggest that targeting the activated conformational state of the 5-HT6R with neutral antagonists implicates the protecting properties of astrocytes. Additionally, 7e prevented scopolamine-induced learning deficits in the novel object recognition test in rats. We propose 7e as a probe for further understanding of the functional outcomes of different states of the 5-HT6R.


Asunto(s)
Imidazoles/síntesis química , Imidazoles/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/síntesis química , Antagonistas de la Serotonina/farmacología , Animales , Astrocitos/efectos de los fármacos , Humanos , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/prevención & control , Masculino , Conformación Molecular , Neuritas/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 33: 115993, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497938

RESUMEN

Kinetin (N6-furfuryladenine), a plant growth substance of the cytokinin family, has been shown to modulate aging and various age-related conditions in animal models. Here we report the synthesis of kinetin isosteres with the purine ring replaced by other bicyclic heterocycles, and the biological evaluation of their activity in several in vitro models related to neurodegenerative diseases. Our findings indicate that kinetin isosteres protect Friedreich́s ataxia patient-derived fibroblasts against glutathione depletion, protect neuron-like SH-SY5Y cells from glutamate-induced oxidative damage, and correct aberrant splicing of the ELP1 gene in fibroblasts derived from a familial dysautonomia patient. Although the mechanism of action of kinetin derivatives remains unclear, our data suggest that the cytoprotective activity of some purine isosteres is mediated by their ability to reduce oxidative stress. Further, the studies of permeation across artificial membrane and model gut and blood-brain barriers indicate that the compounds are orally available and can reach central nervous system. Overall, our data demonstrate that isosteric replacement of the kinetin purine scaffold is a fruitful strategy for improving known biological activities of kinetin and discovering novel therapeutic opportunities.


Asunto(s)
Cinetina/farmacología , Purinas/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoprotección , Relación Dosis-Respuesta a Droga , Humanos , Cinetina/síntesis química , Cinetina/química , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
12.
Eur J Med Chem ; 209: 112854, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33022582

RESUMEN

Herein, we describe the rapid synthesis of a focused library of trisubstituted imidazo[4,5-b]pyridines and imidazo[4,5-c]pyridines from 2,4-dichloro-3-nitropyridine using the combination of solution-phase/solid-phase chemistry as new potential anti-inflammatory agents in the treatment of autoimmune diseases. Structure-activity relationship studies, followed by the structure optimization, provided hit compounds (17 and 28) which inhibited phosphodiesterase 4 (PDE4) with IC50 values comparable to rolipram and displayed different inhibitory potency against phosphodiesterase 7 (PDE7). Among them, compound 17 showed a beneficial effect in all the studied animal models of inflammatory and autoimmune diseases (concanavalin A-induced hepatitis, lipopolysaccharide-induced endotoxemia, collagen-induced arthritis, and MOG35-55-induced encephalomyelitis). In addition, compound 17 showed a favorable pharmacokinetic profile after intraperitoneal administration; it was characterized by a fast absorption from the peritoneal cavity and a relatively long terminal half-life in rats. It was found to penetrate brain barrier in mice. The performed experiments sheds light on the impact of PDE7A inhibition for the efficacy of PDE4 inhibitors in these disease conditions.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Imidazoles/uso terapéutico , Inflamación/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Piridinas/uso terapéutico , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Humanos , Imidazoles/química , Imidazoles/farmacocinética , Imidazoles/farmacología , Masculino , Ratones Endogámicos BALB C , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/farmacocinética , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacocinética , Inhibidores de Fosfodiesterasa/farmacología , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacología , Ratas Wistar
13.
Eur J Med Chem ; 211: 113094, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340912

RESUMEN

Herein, we report an efficient synthetic approach towards trisubstituted imidazo [4,5-c]pyridines designed as inhibitors of Bruton's tyrosine kinase (BTK). Two alternative synthetic routes for the simple preparation of desired compounds with variable substitutions at the N1, C4, C6 positions were introduced with readily available building blocks. Further, the developed synthetic approach was feasible for isomeric compounds bearing imidazo [4,5-b]pyridine scaffolds. In contrast to expectations based on previous studies, the imidazo [4,5-c]pyridine inhibitor exhibited a significantly higher activity against BTK compared to its imidazo [4,5-b]pyridine isomer. An inherent SAR study in the series of imidazo [4,5-c]pyridine compounds revealed a remarkably high tolerance of C6 substitutions for both hydrophobic and hydrophilic substituents. Preliminary cellular experiments indicated selective BTK targeting in Burkitt lymphoma and mantle cell lymphoma cell lines. The inhibitors could thus serve as starting points for further development, eventually leading to BTK inhibitors that could be used after ibrutinib failure.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Linfoma no Hodgkin/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Transducción de Señal , Relación Estructura-Actividad
14.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751860

RESUMEN

Hydrogels are suitable for osteochondral defect regeneration as they mimic the viscoelastic environment of cartilage. However, their biomechanical properties are not sufficient to withstand high mechanical forces. Therefore, we have prepared electrospun poly-ε-caprolactone-chitosan (PCL-chit) and poly(ethylene oxide)-chitosan (PEO-chit) nanofibers, and FTIR analysis confirmed successful blending of chitosan with other polymers. The biocompatibility of PCL-chit and PEO-chit scaffolds was tested; fibrochondrocytes and chondrocytes seeded on PCL-chit showed superior metabolic activity. The PCL-chit nanofibers were cryogenically grinded into microparticles (mean size of about 500 µm) and further modified by polyethylene glycol-biotin in order to bind the anti-CD44 antibody, a glycoprotein interacting with hyaluronic acid (PCL-chit-PEGb-antiCD44). The PCL-chit or PCL-chit-PEGb-antiCD44 microparticles were mixed with a composite gel (collagen/fibrin/platelet rich plasma) to improve its biomechanical properties. The storage modulus was higher in the composite gel with microparticles compared to fibrin. The Eloss of the composite gel and fibrin was higher than that of the composite gel with microparticles. The composite gel either with or without microparticles was further tested in vivo in a model of osteochondral defects in rabbits. PCL-chit-PEGb-antiCD44 significantly enhanced osteogenic regeneration, mainly by desmogenous ossification, but decreased chondrogenic differentiation in the defects. PCL-chit-PEGb showed a more homogeneous distribution of hyaline cartilage and enhanced hyaline cartilage differentiation.

15.
Eur J Med Chem ; 204: 112636, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32731189

RESUMEN

Spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK) are attractive targets in human haematological malignancies with excessively activated B-cell receptor (BCR) signalling pathways. Entospletinib is a SYK inhibitor that has been evaluated as a clinical candidate. We designed and prepared five isosteres in which the imidazo[1,2-a]pyrazine scaffold of entospletinib was altered to pyrazolo[3,4-d]pyrimidine, pyrrolo[3,2-d]pyrimidine, imidazo[4,5-b]pyridine, imidazo[4,5-c]pyridine and purine. The last two isosteres were the most potent SYK inhibitors, with IC50 values in the mid-nanomolar range. Importantly, three compounds also inhibited BTK more effectively than did entospletinib. Further experiments then showed that BCR signalling was suppressed in Ramos cells by the potent compounds. Preliminary kinase inhibition screening also revealed LCK and SRC as additional targets. Our results further support the hypothesis that multikinase targeting compounds could produce more robust responses in the treatment of B lymphoid neoplasms.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Indazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Quinasa Syk/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Indazoles/administración & dosificación , Fosforilación , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazinas/administración & dosificación
16.
RSC Adv ; 10(59): 35906-35916, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-35517075

RESUMEN

The preparation of novel 1,4-oxazepane-5-carboxylic acids bearing two stereocenters is reported in this article. Fmoc-HSe(TBDMS)-OH immobilized on Wang resin was reacted with different nitrobenzenesulfonyl chlorides and alkylated with 2-bromoacetophenones to yield N-phenacyl nitrobenzenesulfonamides. Their cleavage from the polymer support using trifluoroacetic acid (TFA) led to the removal of the silyl protective group followed by spontaneous lactonization. In contrast, TFA/triethylsilane (Et3SiH)-mediated cleavage yielded 1,4-oxazepane derivatives as a mixture of inseparable diastereomers. The regioselectivity/stereoselectivity depended on the substitution of the starting 2-bromoacetophenones and was studied in detail. Catalytic hydrogenation of the nitro group improved the separability of the resulting diastereomeric anilines, which allowed us to isolate and fully characterize the major isomers.

17.
J Org Chem ; 85(2): 985-993, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31809570

RESUMEN

N-(3-Phenylprop-2-yn-1-yl)-sulfonamides derived from serine and threonine were synthesized using solid-phase synthesis and subjected to reaction with trimethylsilyl trifluoromethanesulfonate (TMSOTf). In contrast to the previously reported formation of 1,4-oxazepanes, this reaction afforded pyrrolidin-3-ones. A mechanistic explanation for this unexpected outcome is proposed, and the limitations and scope of the rearrangement are outlined.

19.
Eur J Med Chem ; 181: 111569, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31404862

RESUMEN

This article provides an overview of compounds based on imidazo[1,2-a]pyridine, imidazo[1,5-a]pyridine, imidazo[4,5-b]pyridine and imidazo[4,5-c]pyridine scaffolds, which act as potent ligands of diverse molecular targets localized in the central nervous system. A literature survey revealed that various imidazopyridines can be powerful modulators of several diseases associated with CNS dysfunction including Alzheimer's disease, Parkinson's disease, schizophrenia, depression or sleeping disorders. A description of target enzymes (e.g., ß-secretase, γ-secretase, fatty acid amide hydrolase - FAAH, leucine-rich repeat kinase 2 - LRRK2) and selected receptors (e.g., GABA-A, histamine H3, serotonin 5-HT3, 5-HT4, 5-HT6, dopamine D4, adenosine A2A, orexin), modes of action of imidazopyridine-based ligands and their therapeutic importance is discussed.


Asunto(s)
Diseño de Fármacos , Imidazoles/química , Imidazoles/uso terapéutico , Trastornos Mentales/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Piridinas/química , Piridinas/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Humanos , Imidazoles/farmacología , Ligandos , Terapia Molecular Dirigida , Piridinas/farmacología
20.
Chem Biol Interact ; 304: 194-201, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768969

RESUMEN

Plant cytosolic aldehyde dehydrogenases from family 2 (ALDH2s, EC 1.2.1.3) are non-specific enzymes and participate for example in the metabolism of acetaldehyde or biosynthesis of phenylpropanoids. Plant aminoaldehyde dehydrogenases (AMADHs, ALDH10 family, EC 1.2.1.19) are broadly specific and play an important role in polyamine degradation or production of osmoprotectants. We have tested imidazole and pyrazole carbaldehydes and their alkyl-, allyl-, benzyl-, phenyl-, pyrimidinyl- or thienyl-derivatives as possible substrates of plant ALDH2 and ALDH10 enzymes. Imidazole represents a building block of histidine, histamine as well as certain alkaloids. It also appears in synthetic pharmaceuticals such as imidazole antifungals. Biological compounds containing pyrazole are rare (e.g. pyrazole-1-alanine and pyrazofurin antibiotics) but the ring is often found as a constituent of many synthetic drugs and pesticides. The aim was to evaluate whether aldehyde compounds based on azole heterocycles are oxidized by the enzymes, which would further support their expected role as detoxifying aldehyde scavengers. The analyzed imidazole and pyrazole carbaldehydes were only slowly converted by ALDH10s but well oxidized by cytosolic maize ALDH2 isoforms (particularly by ALDH2C1). In the latter case, the respective Km values were in the range of 10-2000 µmol l-1; the kcat values appeared mostly between 0.1 and 1.0 s-1. The carbaldehyde group at the position 4 of imidazole was oxidized faster than that at the position 2. Such a difference was not observed for pyrazole carbaldehydes. Aldehydes with an aromatic substituent on their heterocyclic ring were oxidized faster than those with an aliphatic substituent. The most efficient of the tested substrates were comparable to benzaldehyde and p-anisaldehyde known as the best aromatic aldehyde substrates of plant cytosolic ALDH2s in vitro.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Aldehídos/metabolismo , Pisum sativum/enzimología , Solanum lycopersicum/enzimología , Zea mays/enzimología , Aldehídos/química , Imidazoles/química , Imidazoles/metabolismo , Estructura Molecular , Oxidación-Reducción , Pirazoles/química , Pirazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA