Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(4): e55362, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36722816

RESUMEN

During neuronal development, extensive changes to chromatin states occur to regulate lineage-specific gene expression. The molecular factors underlying the repression of non-neuronal genes in differentiated neurons are poorly characterised. The Mi2/NuRD complex is a multiprotein complex with nucleosome remodelling and histone deacetylase activity. Whilst NuRD has previously been implicated in the development of nervous system tissues, the precise nature of the gene expression programmes that it coordinates is ill-defined. Furthermore, evidence from several species suggests that Mi-2 may be incorporated into multiple complexes that may not possess histone deacetylase activity. We show that Mi-2 activity is required for suppressing ectopic expression of germline genes in neurons independently of HDAC1/NuRD, whilst components of NuRD, including Mi-2, regulate neural gene expression to ensure proper development of the larval nervous system. We find that Mi-2 binding in the genome is dynamic during neuronal maturation, and Mi-2-mediated repression of ectopic gene expression is restricted to the early stages of neuronal development, indicating that Mi-2/NuRD is required for establishing stable neuronal transcriptomes during the early stages of neuronal differentiation.


Asunto(s)
Expresión Génica Ectópica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Histona Desacetilasas/metabolismo , Cromatina/genética , Nucleosomas
2.
Cell Rep ; 39(3): 110679, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443165

RESUMEN

Adult stem cells coordinate intrinsic and extrinsic, local and systemic, cues to maintain the proper balance between self-renewal and differentiation. However, the precise mechanisms stem cells use to integrate these signals remain elusive. Here, we show that Escargot (Esg), a member of the Snail family of transcription factors, regulates the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis by attenuating the activity of the pro-differentiation insulin receptor (InR) pathway. Esg positively regulates the expression of an antagonist of insulin signaling, ImpL2, while also attenuating the expression of InR. Furthermore, Esg-mediated repression of the InR pathway is required to suppress CySC loss in response to starvation. Given the conservation of Snail-family transcription factors, characterizing the mechanisms by which Esg regulates cell-fate decisions during homeostasis and a decline in nutrient availability is likely to provide insight into the metabolic regulation of stem cell behavior in other tissues and organisms.


Asunto(s)
Células Madre Adultas , Proteínas de Drosophila , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Receptor de Insulina/metabolismo , Testículo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Elife ; 112022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35363137

RESUMEN

The ability to control transgene expression, both spatially and temporally, is essential for studying model organisms. In Drosophila, spatial control is primarily provided by the GAL4/UAS system, whilst temporal control relies on a temperature-sensitive GAL80 (which inhibits GAL4) and drug-inducible systems. However, these are not ideal. Shifting temperature can impact on many physiological and behavioural traits, and the current drug-inducible systems are either leaky, toxic, incompatible with existing GAL4-driver lines, or do not generate effective levels of expression. Here, we describe the auxin-inducible gene expression system (AGES). AGES relies on the auxin-dependent degradation of a ubiquitously expressed GAL80, and therefore, is compatible with existing GAL4-driver lines. Water-soluble auxin is added to fly food at a low, non-lethal, concentration, which induces expression comparable to uninhibited GAL4 expression. The system works in both larvae and adults, providing a stringent, non-lethal, cost-effective, and convenient method for temporally controlling GAL4 activity in Drosophila.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Animales Modificados Genéticamente , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expresión Génica , Ácidos Indolacéticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Nat Aging ; 2(12): 1176-1190, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-37118537

RESUMEN

A transient, homeostatic transcriptional response can result in transcriptional memory, programming subsequent transcriptional outputs. Transcriptional memory has great but unappreciated potential to alter animal aging as animals encounter a multitude of diverse stimuli throughout their lifespan. Here we show that activating an evolutionarily conserved, longevity-promoting transcription factor, dFOXO, solely in early adulthood of female fruit flies is sufficient to improve their subsequent health and survival in midlife and late life. This youth-restricted dFOXO activation causes persistent changes to chromatin landscape in the fat body and requires chromatin remodelers such as the SWI/SNF and ISWI complexes to program health and longevity. Chromatin remodeling is accompanied by a long-lasting transcriptional program that is distinct from that observed during acute dFOXO activation and includes induction of Xbp1. We show that this later-life induction of Xbp1 is sufficient to curtail later-life mortality. Our study demonstrates that transcriptional memory can profoundly alter how animals age.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Drosophila , Animales , Femenino , Ensamble y Desensamble de Cromatina/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica , Drosophila/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/genética
5.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397094

RESUMEN

The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.


Asunto(s)
Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Perfilación de la Expresión Génica/métodos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Nat Cell Biol ; 23(5): 485-496, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972729

RESUMEN

Coordination of stem cell function by local and niche-derived signals is essential to preserve adult tissue homeostasis and organismal health. The vasculature is a prominent component of multiple stem cell niches. However, its role in adult intestinal homeostasis remains largely understudied. Here we uncover a previously unrecognised crosstalk between adult intestinal stem cells in Drosophila and the vasculature-like tracheal system, which is essential for intestinal regeneration. Following damage to the intestinal epithelium, gut-derived reactive oxygen species activate tracheal HIF-1α and bidirectional FGF/FGFR signalling, leading to reversible remodelling of gut-associated terminal tracheal cells and intestinal stem cell proliferation following damage. Unexpectedly, reactive oxygen species-induced adult tracheal plasticity involves downregulation of the tracheal specification factor trachealess (trh) and upregulation of IGF2 messenger RNA-binding protein (IGF2BP2/Imp). Our results reveal an intestine-vasculature inter-organ communication programme that is essential to adapt the stem cell response to the proliferative demands of the intestinal epithelium.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Madre Adultas/metabolismo , Homeostasis/fisiología , Células Madre/metabolismo , Animales , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Unión al ARN/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Nicho de Células Madre/fisiología
7.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561239

RESUMEN

Targeted DamID (TaDa) is an increasingly popular method of generating cell-type-specific DNA-binding profiles in vivo. Although sensitive and versatile, TaDa requires the generation of new transgenic fly lines for every protein that is profiled, which is both time-consuming and costly. Here, we describe the FlyORF-TaDa system for converting an existing FlyORF library of inducible open reading frames (ORFs) to TaDa lines via a genetic cross, with recombinant progeny easily identifiable by eye color. Profiling the binding of the H3K36me3-associated chromatin protein MRG15 in larval neural stem cells using both FlyORF-TaDa and conventional TaDa demonstrates that new lines generated using this system provide accurate and highly reproducible DamID-binding profiles. Our data further show that MRG15 binds to a subset of active chromatin domains in vivo. Courtesy of the large coverage of the FlyORF library, the FlyORF-TaDa system enables the easy creation of TaDa lines for 74% of all transcription factors and chromatin-modifying proteins within the Drosophila genome.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Cromatina , Proteínas Cromosómicas no Histona , ADN , Metilación de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Unión Proteica
8.
G3 (Bethesda) ; 10(12): 4459-4471, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33051260

RESUMEN

Epigenetic silencing by Polycomb group (PcG) complexes can promote epithelial-mesenchymal transition (EMT) and stemness and is associated with malignancy of solid cancers. Here we report a role for Drosophila PcG repression in a partial EMT event that occurs during wing disc eversion, an early event during metamorphosis. In a screen for genes required for eversion we identified the PcG genes Sexcombs extra (Sce) and Sexcombs midleg (Scm) Depletion of Sce or Scm resulted in internalized wings and thoracic clefts, and loss of Sce inhibited the EMT of the peripodial epithelium and basement membrane breakdown, ex vivo. Targeted DamID (TaDa) using Dam-Pol II showed that Sce knockdown caused a genomic transcriptional response consistent with a shift toward a more stable epithelial fate. Surprisingly only 17 genes were significantly upregulated in Sce-depleted cells, including Abd-B, abd-A, caudal, and nubbin Each of these loci were enriched for Dam-Pc binding. Of the four genes, only Abd-B was robustly upregulated in cells lacking Sce expression. RNAi knockdown of all four genes could partly suppress the Sce RNAi eversion phenotype, though Abd-B had the strongest effect. Our results suggest that in the absence of continued PcG repression peripodial cells express genes such as Abd-B, which promote epithelial state and thereby disrupt eversion. Our results emphasize the important role that PcG suppression can play in maintaining cell states required for morphogenetic events throughout development and suggest that PcG repression of Hox genes may affect epithelial traits that could contribute to metastasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Proteínas del Grupo Polycomb , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Transición Epitelial-Mesenquimal/genética , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb/genética
9.
Biol Open ; 9(5)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493733

RESUMEN

The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Neurotransmisores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Modelos Biológicos , Neuronas/metabolismo
10.
Elife ; 92020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32255428

RESUMEN

Condensin complexes are essential for mitotic chromosome assembly and segregation during cell divisions, however, little is known about their functions in post-mitotic cells. Here we report a role for the condensin I subunit Cap-G in Drosophila neurons. We show that, despite not requiring condensin for mitotic chromosome compaction, post-mitotic neurons express Cap-G. Knockdown of Cap-G specifically in neurons (from their birth onwards) results in developmental arrest, behavioural defects, and dramatic gene expression changes, including reduced expression of a subset of neuronal genes and aberrant expression of genes that are not normally expressed in the developing brain. Knockdown of Cap-G in mature neurons results in similar phenotypes but to a lesser degree. Furthermore, we see dynamic binding of Cap-G at distinct loci in progenitor cells and differentiated neurons. Therefore, Cap-G is essential for proper gene expression in neurons and plays an important role during the early stages of neuronal development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Mitosis/genética , Complejos Multiproteicos/metabolismo , Neuronas/citología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Masculino , Complejos Multiproteicos/genética
11.
Cell Rep ; 27(10): 3019-3033.e5, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31167145

RESUMEN

Homeostatic renewal and stress-related tissue regeneration rely on stem cell activity, which drives the replacement of damaged cells to maintain tissue integrity and function. The Jun N-terminal kinase (JNK) signaling pathway has been established as a critical regulator of tissue homeostasis both in intestinal stem cells (ISCs) and mature enterocytes (ECs), while its chronic activation has been linked to tissue degeneration and aging. Here, we show that JNK signaling requires the stress-inducible transcription factor Ets21c to promote tissue renewal in Drosophila. We demonstrate that Ets21c controls ISC proliferation as well as EC apoptosis through distinct sets of target genes that orchestrate cellular behaviors via intrinsic and non-autonomous signaling mechanisms. While its loss appears dispensable for development and prevents epithelial aging, ISCs and ECs demand Ets21c function to mount cellular responses to oxidative stress. Ets21c thus emerges as a vital regulator of proliferative homeostasis in the midgut and a determinant of the adult healthspan.


Asunto(s)
Envejecimiento , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Animales , Apoptosis , Proliferación Celular , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas del Huevo/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Mucosa Intestinal/citología , Longevidad , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ets/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
12.
Development ; 146(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30877125

RESUMEN

The interaction of proteins and RNA with chromatin underlies the regulation of gene expression. The ability to profile easily these interactions is fundamental for understanding chromatin biology in vivo DNA adenine methyltransferase identification (DamID) profiles genome-wide protein-DNA interactions without antibodies, fixation or protein pull-downs. Recently, DamID has been adapted for applications beyond simple assaying of protein-DNA interactions, such as for studying RNA-chromatin interactions, chromatin accessibility and long-range chromosome interactions. Here, we provide an overview of DamID and introduce improvements to the technology, discuss their applications and compare alternative methodologies.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Técnicas Genéticas , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Animales , Sitios de Unión/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Genómica , Humanos , Ratones , Unión Proteica , Ribosomas/metabolismo , Análisis de Secuencia de ADN
13.
Dis Model Mech ; 12(4)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30910908

RESUMEN

The Drosophila fat body is the primary organ of energy storage as well as being responsible for the humoral response to infection. Its physiological function is of critical importance to the survival of the organism; however, many molecular regulators of its function remain ill-defined. Here, we show that the Drosophila melanogaster bromodomain-containing protein FS(1)H is required in the fat body for normal lifespan as well as metabolic and immune homeostasis. Flies lacking fat body fs(1)h exhibit short lifespan, increased expression of immune target genes, an inability to metabolize triglyceride, and low basal AKT activity, mostly resulting from systemic defects in insulin signalling. Removal of a single copy of the AKT-responsive transcription factor foxo normalises lifespan, metabolic function, uninduced immune gene expression and AKT activity. We suggest that the promotion of systemic insulin signalling activity is a key in vivo function of fat body fs(1)h This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Drosophila melanogaster/genética , Activación Enzimática , Cuerpo Adiposo/metabolismo , Regulación de la Expresión Génica , Hipoglucemia/patología , Insulina/metabolismo , Longevidad , Fenotipo , Análisis de Supervivencia , Triglicéridos/metabolismo
14.
Elife ; 82019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30694180

RESUMEN

Spatial and temporal cues are required to specify neuronal diversity, but how these cues are integrated in neural progenitors remains unknown. Drosophila progenitors (neuroblasts) are a good model: they are individually identifiable with relevant spatial and temporal transcription factors known. Here we test whether spatial/temporal factors act independently or sequentially in neuroblasts. We used Targeted DamID to identify genomic binding sites of the Hunchback temporal factor in two neuroblasts (NB5-6 and NB7-4) that make different progeny. Hunchback targets were different in each neuroblast, ruling out the independent specification model. Moreover, each neuroblast had distinct open chromatin domains, which correlated with differential Hb-bound loci in each neuroblast. Importantly, the Gsb/Pax3 spatial factor, expressed in NB5-6 but not NB7-4, had genomic binding sites correlated with open chromatin in NB5-6, but not NB7-4. Our data support a model in which early-acting spatial factors like Gsb establish neuroblast-specific open chromatin domains, leading to neuroblast-specific temporal factor binding and the production of different neurons in each neuroblast lineage.


Asunto(s)
Cromatina/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Factor de Transcripción PAX3/genética , Transactivadores/genética , Factores de Transcripción/genética , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Modelos Biológicos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX3/metabolismo , Unión Proteica , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
15.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185410

RESUMEN

The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells.


Asunto(s)
Metilación de ADN/genética , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , Proteínas de Unión al ADN , Genoma , Células Germinativas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica , Proteínas de Unión al ARN
16.
Elife ; 72018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29481322

RESUMEN

During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.


Asunto(s)
Diferenciación Celular , Cromatina/metabolismo , Drosophila/embriología , Epigénesis Genética , Células Madre Pluripotentes/fisiología , Animales , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Coloración y Etiquetado
17.
Cell Rep ; 21(10): 2911-2925, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212035

RESUMEN

Longitudinals lacking (lola) is one of the most complex genes in Drosophila melanogaster, encoding up to 20 protein isoforms that include key transcription factors involved in axonal pathfinding and neural reprogramming. Most previous studies have employed loss-of-function alleles that disrupt lola common exons, making it difficult to delineate isoform-specific functions. To overcome this issue, we have generated isoform-specific mutants for all isoforms using CRISPR/Cas9. This enabled us to study specific isoforms with respect to previously characterized roles for Lola and to demonstrate a specific function for one variant in axon guidance via activation of the microtubule-associated factor Futsch. Importantly, we also reveal a role for a second variant in preventing neurodegeneration via the positive regulation of a key enzyme of the octopaminergic pathway. Thus, our comprehensive study expands the functional repertoire of Lola functions, and it adds insights into the regulatory control of neurotransmitter expression in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Oxigenasas de Función Mixta/metabolismo , Animales , Western Blotting , Drosophila , Drosophila melanogaster , Hibridación in Situ , Octopamina/metabolismo , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo
18.
Nat Protoc ; 11(9): 1586-98, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27490632

RESUMEN

This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.


Asunto(s)
Separación Celular/métodos , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Metilación de ADN , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genómica , Unión Proteica , Factores de Tiempo
19.
Artículo en Inglés | MEDLINE | ID: mdl-26383089

RESUMEN

The interaction of proteins with chromatin is fundamental for several essential cellular processes. During the development of an organism, genes must to be tightly regulated both temporally and spatially. This is achieved through the action of chromatin-binding proteins such as transcription factors, histone modifiers, nucleosome remodelers, and lamins. Furthermore, protein-DNA interactions are important in the adult, where their perturbation can lead to disruption of homeostasis, metabolic dysregulation, and diseases such as cancer. Understanding the nature of these interactions is of paramount importance in almost all areas of molecular biological research. In recent years, DNA adenine methyltransferase identification (DamID) has emerged as one of the most comprehensive and versatile methods available for profiling protein-DNA interactions on a genomic scale. DamID has been used to map a variety of chromatin-binding proteins in several model organisms and has the potential for continued adaptation and application in the field of genomic biology. WIREs Dev Biol 2016, 5:25-37. doi: 10.1002/wdev.205 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Técnicas de Sonda Molecular , Animales , Cromatina/fisiología , Cromatina/ultraestructura , Inmunoprecipitación de Cromatina , Epigénesis Genética , Humanos , Anotación de Secuencia Molecular , Unión Proteica , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología
20.
Genetics ; 202(1): 191-219, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26567182

RESUMEN

High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Técnicas Genéticas , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Línea Celular , Secuencia Conservada , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Retroalimentación Fisiológica , Células HeLa , Hemocitos/citología , Humanos , Neuroglía/citología , Transducción de Señal , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...