Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(1): 110620, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385723

RESUMEN

Establishing germ cell sexual identity is critical for development of male and female germline stem cells (GSCs) and production of sperm or eggs. Germ cells depend on signals from the somatic gonad to determine sex, but in organisms such as flies, mice, and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ-cell-intrinsic cues combine to regulate germline sex determination is thus a key question. We find that JAK/STAT signaling in the GSC niche promotes male identity in germ cells, in part by activating the chromatin reader Phf7. Further, we find that JAK/STAT signaling is blocked in XX (female) germ cells through the action of the sex determination gene Sex lethal to preserve female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.


Asunto(s)
Proteínas de Drosophila , Células Germinativas , Procesos de Determinación del Sexo , Células Madre , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Células Germinativas/metabolismo , Proteínas de Homeodominio/metabolismo , Quinasas Janus/metabolismo , Masculino , Factores de Transcripción STAT/metabolismo , Procesos de Determinación del Sexo/genética , Procesos de Determinación del Sexo/fisiología , Transducción de Señal/fisiología , Nicho de Células Madre , Células Madre/metabolismo
2.
Stem Cell Reports ; 16(12): 2913-2927, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34739848

RESUMEN

Skeletal muscle stem cells, i.e., satellite cells (SCs), are the essential source of new myonuclei for skeletal muscle regeneration following injury or chronic degenerative myopathies. Both SC number and regenerative capacity diminish during aging. However, molecular regulators that govern sizing of the initial SC pool are unknown. We demonstrate that fibroblast growth factor 6 (FGF6) is critical for SC pool scaling. Mice lacking FGF6 have reduced SCs of early postnatal origin and impaired regeneration. By contrast, increasing FGF6 during the early postnatal period is sufficient for SC expansion. Together, these data support that FGF6 is necessary and sufficient to modulate SC numbers during a critical postnatal period to establish the quiescent adult muscle stem cell pool. Our work highlights postnatal development as a time window receptive for scaling a somatic stem cell population via growth factor signaling, which might be relevant for designing new biomedical strategies to enhance tissue regeneration.


Asunto(s)
Factor 6 de Crecimiento de Fibroblastos/metabolismo , Músculo Esquelético/patología , Células Madre/patología , Animales , Animales Recién Nacidos , Proliferación Celular , Ratones Endogámicos C57BL , Ratones Mutantes , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesiones , Regeneración
3.
PLoS One ; 14(10): e0224944, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31671168

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0203126.].

4.
PLoS One ; 13(9): e0203126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30183752

RESUMEN

Induced pluripotent stem cell (iPSC) technology enables the creation and selection of pluripotent cells with specific genetic traits. This report describes a pluripotent cell line created specifically to form replacement pancreatic cells as a therapy for insulin-dependent diabetes. Beginning with primary pancreatic tissue acquired through organ donation, cells were isolated, re-programmed using non-integrating vectors and exposed to a four day differentiation protocol to generate definitive endoderm, a developmental precursor to pancreas. The best performing iPSC lines were then subjected to a 12-day basic differentiation protocol to generate endocrine pancreas precursors. The line that most consistently generated highly pure populations was selected for further development. This approach created an iPSC-variant cell line, SR1423, with a genetic profile correlated with preferential differentiation toward endodermal lineage at the loss of mesodermal potential. This report further describes an improved differentiation protocol that, coupled with SR1423, generated populations of greater than 60% insulin-expressing cells that secrete insulin in response to glucose and are capable of reversing diabetes in rodents. Created and banked following cGMP guidelines, SR1423 is a candidate cell line for the production of insulin-producing cells useful for the treatment of diabetes.


Asunto(s)
Técnicas de Reprogramación Celular , Diabetes Mellitus Experimental/terapia , Células Madre Pluripotentes Inducidas/trasplante , Células Secretoras de Insulina/trasplante , Adulto , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Glucosa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Páncreas/citología , Páncreas/metabolismo
5.
Elife ; 52016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725085

RESUMEN

When unperturbed, somatic stem cells are poised to affect immediate tissue restoration upon trauma. Yet, little is known regarding the mechanistic basis controlling initial and homeostatic 'scaling' of stem cell pool sizes relative to their target tissues for effective regeneration. Here, we show that TEAD1-expressing skeletal muscle of transgenic mice features a dramatic hyperplasia of muscle stem cells (i.e. satellite cells, SCs) but surprisingly without affecting muscle tissue size. Super-numeral SCs attain a 'normal' quiescent state, accelerate regeneration, and maintain regenerative capacity over several injury-induced regeneration bouts. In dystrophic muscle, the TEAD1 transgene also ameliorated the pathology. We further demonstrate that hyperplastic SCs accumulate non-cell-autonomously via signal(s) from the TEAD1-expressing myofiber, suggesting that myofiber-specific TEAD1 overexpression activates a physiological signaling pathway(s) that determines initial and homeostatic SC pool size. We propose that TEAD1 and its downstream effectors are medically relevant targets for enhancing muscle regeneration and ameliorating muscle pathology.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN/genética , Distrofina/deficiencia , Expresión Génica , Proteínas Nucleares/genética , Células Satélite del Músculo Esquelético/fisiología , Factores de Transcripción/genética , Animales , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción de Dominio TEA
6.
Genesis ; 52(8): 759-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844572

RESUMEN

We report the generation of five mouse strains with the tamoxifen-inducible Cre (Cre-ER(T) (2) ; CE) gene cassette knocked into the endogenous loci of Pax3, Myod1, Myog, Myf6, and Myl1, collectively as a resource for the skeletal muscle research community. We characterized these CE strains using the Cre reporter mice, R26R(L) (acZ) , during embryogenesis and show that they direct tightly controlled tamoxifen-inducible reporter expression within the expected cell lineage determined by each myogenic gene. We also examined a few selected adult skeletal muscle groups for tamoxifen-inducible reporter expression. None of these new CE alleles direct reporter expression in the cardiac muscle. All these alleles follow the same knock-in strategy by replacing the first exon of each gene with the CE cassette, rendering them null alleles of the endogenous gene. Advantages and disadvantages of this design are discussed. Although we describe potential immediate use of these strains, their utility likely extends beyond foreseeable questions in skeletal muscle biology.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Alelos , Animales , Linaje de la Célula , Técnicas de Sustitución del Gen , Ratones , Músculo Esquelético/crecimiento & desarrollo
7.
Biochem Biophys Res Commun ; 308(2): 276-83, 2003 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12901865

RESUMEN

The dynamin-related GTPase, Mgm1p, is critical for the fusion of the mitochondrial outer membrane, maintenance of mitochondrial DNA (mtDNA), formation of normal inner membrane structures, and inheritance of mitochondria. Although there are two forms of Mgm1p, 100 and 90 kDa, their respective functions and the mechanism by which these two forms are produced are not clear. We previously isolated ugo2 mutants in a genetic screen to identify components involved in mitochondrial fusion [J. Cell Biol. 152 (2001) 1123]. In this paper, we show that ugo2 mutants are defective in PCP1, a gene encoding a rhomboid-related serine protease. Cells lacking Pcp1p are defective in the processing of Mgm1p and produce only the larger (100 kDa) form of Mgm1p. Similar to mgm1delta cells, pcp1delta cells contain partially fragmented mitochondria, instead of the long tubular branched mitochondria of wild-type cells. In addition, pcp1delta cells, like mgm1delta cells, lack mtDNA and therefore are unable to grow on nonfermentable medium. Mutations in the catalytic domain lead to complete loss of Pcp1p function. Similar to mgm1delta cells, the fragmentation of mitochondria and loss of mtDNA of pcp1delta cells were rescued when mitochondrial division was blocked by inactivating Dnm1p, a dynamin-related GTPase. Surprisingly, in contrast to mgm1delta cells, which are completely defective in mitochondrial fusion, pcp1delta cells can fuse their mitochondria after yeast cell mating. Our study demonstrates that Pcp1p is required for the processing of Mgm1p and controls normal mitochondrial shape and mtDNA maintenance by producing the 90 kDa form of Mgm1p. However, the processing of Mgm1p is not strictly required for mitochondrial fusion, indicating that the 100 kDa form is sufficient to promote fusion.


Asunto(s)
ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Alelos , Secuencia de Bases , ADN de Hongos/genética , ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Genes Fúngicos , Fusión de Membrana/genética , Fusión de Membrana/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Mutación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Serina Endopeptidasas/genética
8.
Mol Biol Cell ; 14(6): 2342-56, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12808034

RESUMEN

In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...