Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Alzheimers Dement (N Y) ; 9(3): e12415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600216

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is characterized by the presence of both amyloid and tau pathology. In vivo diagnosis can be made with amyloid and tau positron emission tomography (PET) imaging. Emergent evidence supports that amyloid and tau accumulation are associated and that amyloid accumulation may precede that of tau. This report further investigates the relationship between amyloid and tau to assess whether elevated cortical tau can predict elevated amyloid in participants with early symptomatic AD. METHODS: Florbetapir F18 and flortaucipir F18 uptake were evaluated from baseline PET scans collected in three multi-center studies with cognitively impaired participants, including A05 (N = 306; NCT02016560), TB (N = 310; TRAILBLAZER-ALZ; NCT03367403), and TB2 (N = 1165; TRAILBLAZER-ALZ 2; NCT04437511). Images were assessed using visual and quantitative approaches to establish amyloid (A+) and tau (T+) positivity, as well as a combination method (tauVQ) to establish T+. Associations between global amyloid and tau were evaluated with positive and negative predictive values (PPV, NPV) and likelihood ratios (LR+, LR-). Predictive values within subgroups according to ethnicity, race, cognitive score, age, and sex were also evaluated. The relationship between regional tau (four target and two reference regions were tested) and global amyloid was investigated in A05 participant scans using receiver-operating characteristic (ROC) curves. RESULTS: PPV for amyloid positivity was ≥93% for all three trials using various A+ and T+ definitions, including visual, quantitative, and combination methods. Population characteristics did not have an impact on A+ predictability. Regional analyses (early tau (Eτ) volume of interest (VOI), temporal, parietal, frontal) revealed significant area under the ROC curve in Eτ VOI compared to frontal region, regardless of reference region and consistent among visual and quantitative A+ definitions (p < 0.001). DISCUSSION: These findings suggest that a positive tau PET scan is associated (≥93%) with amyloid positivity in individuals with early symptomatic AD, with the potential benefits of reducing clinical trial and health care expenses, radiation exposure, and participant time. Highlights: Positron emission tomography (PET) evaluates candidates for Alzheimer's disease (AD) research. A positive tau PET scan is associated (≥93%) with amyloid positivity.A positive amyloid PET is not necessarily associated with tau positivity.Tau PET could be the sole diagnostic tool to confirm candidates for AD trials.

2.
Alzheimers Dement ; 19(12): 5605-5619, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37288753

RESUMEN

INTRODUCTION: How to detect patterns of greater tau burden and accumulation is still an open question. METHODS: An unsupervised data-driven whole-brain pattern analysis of longitudinal tau positron emission tomography (PET) was used first to identify distinct tau accumulation profiles and then to build baseline models predictive of tau-accumulation type. RESULTS: The data-driven analysis of longitudinal flortaucipir PET from studies done by the Alzheimer's Disease Neuroimaging Initiative, Avid Pharmaceuticals, and Harvard Aging Brain Study (N = 348 cognitively unimpaired, N = 188 mild cognitive impairment, N = 77 dementia), yielded three distinct flortaucipir-progression profiles: stable, moderate accumulator, and fast accumulator. Baseline flortaucipir levels, amyloid beta (Aß) positivity, and clinical variables, identified moderate and fast accumulators with 81% and 95% positive predictive values, respectively. Screening for fast tau accumulation and Aß positivity in early Alzheimer's disease, compared to Aß positivity with variable tau progression profiles, required 46% to 77% lower sample size to achieve 80% power for 30% slowing of clinical decline. DISCUSSION: Predicting tau progression with baseline imaging and clinical markers could allow screening of high-risk individuals most likely to benefit from a specific treatment regimen.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Proteínas tau , Tomografía de Emisión de Positrones/métodos , Disfunción Cognitiva/diagnóstico por imagen
3.
Alzheimers Res Ther ; 15(1): 41, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855201

RESUMEN

BACKGROUND: There is an increasing interest in utilizing tau PET to identify patients early in Alzheimer's disease (AD). In this work, a temporal lobe composite (Eτ) volume of interest (VOI) was evaluated in a longitudinal flortaucipir cohort and compared to a previously described global neocortical VOI. In a separate autopsy-confirmed study, the sensitivity of the Eτ VOI for identifying intermediate (B2) neurofibrillary tangle (NFT) pathology was evaluated. METHODS: A total of 427 subjects received flortaucipir, florbetapir, MRI, and cognitive evaluation at baseline and 18 months. In a separate autopsy study, 67 subjects received ante-mortem flortaucipir scans, and neuropathological findings were recorded according to NIA-AA recommendations by two experts. Two VOIs: Eτ comprising FreeSurfer volumes (bilateral entorhinal cortex, fusiform, parahippocampal, and inferior temporal gyri) transformed to MNI space and a previously published global AD signature-weighted neocortical VOI (ADsignature) (Devous et al., J Nucl Med 59:937-43, 2018), were used to calculate SUVr relative to a white matter reference region (PERSI) (Southekal et al., J Nucl Med Off Publ Soc Nucl Med 59:944-51, 2018). SUVr cutoffs for positivity were determined based on a cohort of young, cognitively normal subjects. Subjects were grouped based on positivity on both VOIs (Eτ+/ADsignature+; Eτ+/ADsignature-; Eτ-/ADsignature-). Groupwise comparisons were performed for baseline SUVr, 18-month changes in SUVr, neurodegeneration, and cognition. For the autopsy study, the sensitivity of Eτ in identifying intermediate Braak pathology (B2) subjects was compared to that of AD signature-weighted neocortical VOI. The average surface maps of subjects in the Eτ+/ADsignature- group and B2 NFT scores were created for visual evaluation of uptake. RESULTS: Sixty-four out of 390 analyzable subjects were identified as Eτ+/ADsignature-: 84% were Aß+, 100% were diagnosed as MCI or AD, and 59% were APOE ε4 carriers. Consistent with the hypothesis that Eτ+/ADsignature- status reflects an early stage of AD, Eτ+/ADsignature- subjects deteriorated significantly faster than Eτ-/ADsignature- subjects, but significantly slower than Eτ+/ADsignature+ subjects, on most measures (i.e., change in ADsignature SUVr, Eτ ROI cortical thickness, and MMSE). The ADsignature VOI was selective for subjects who came to autopsy with a B3 NFT score. In the autopsy study, 12/15 B2 subjects (including 10/11 Braak IV) were Eτ+/ADsignature-. Surface maps showed that flortaucipir uptake was largely captured by the Eτ VOI regions in B2 subjects. CONCLUSION: The Eτ VOI identified subjects with elevated temporal but not global tau (Eτ+/ADsignature-) that were primarily Aß+, APOE ε4 carriers, and diagnosed as MCI or AD. Eτ+/ADsignature- subjects had greater accumulation of tau, greater atrophy, and higher decline on MMSE in 18 months compared to Eτ-/ADsignature- subjects. Finally, the Eτ VOI identified the majority of the intermediate NFT score subjects in an autopsy-confirmed study. As far as we know, this is the first study that presents a visualization of ante-mortem FTP retention patterns that at a group level agree with the neurofibrillary tangle staging scheme proposed by Braak. These findings suggest that the Eτ VOI may be sensitive for detecting impaired subjects early in the course of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Autopsia , Enfermedad de Alzheimer/diagnóstico por imagen , Apolipoproteína E4 , Progresión de la Enfermedad
4.
J Alzheimers Dis ; 80(3): 1091-1104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33682705

RESUMEN

BACKGROUND: Tau neurofibrillary tangle burden increases with Alzheimer's disease (AD) stage and correlates with degree of cognitive impairment. Tau PET imaging could facilitate understanding the relationship between tau pathology and cognitive impairment. OBJECTIVE: Evaluate the relationship between 18F flortaucipir uptake patterns and cognition across multiple cognitive domains. METHODS: We acquired flortaucipir PET scans in 84 amyloid-positive control, mild cognitive impairment (MCI), and AD subjects. Flortaucipir standardized uptake value ratio (SUVr) values were obtained from a neocortical volume of interest (VOI), a precuneus VOI, and VOIs defined by the correlation between flortaucipir SUVr images and domain-specific cognitive tests. Cognitive assessments included Mini-Mental State Exam (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), and a neuropsychological test battery (i.e., Wechsler Memory Scale-Revised Logical Memory (WMS-R), Trail Making Test, Boston Naming Test, Digit Symbol Substitution Test, Animal List Generation, WMS-R Digit Span, American National Adult Reading Test, Clock Drawing Test, Judgment of Line Orientation, and WMS-R Logical Memory II (Delayed Recall)) and the Functional Activities Questionnaire (FAQ). Correlation analyses compared regional and voxel-wise VOIs to cognitive scores. RESULTS: Subjects included 5 controls, 47 MCI, and 32 AD subjects. Significant correlations were seen between both flortaucipir and florbetapir SUVrs and MMSE, ADAS-Cog, and FAQ. Cognitive impairment was associated with increased flortaucipir uptake in regionally specific patterns consistent with the neuroanatomy underlying specific cognitive tests. CONCLUSION: Flortaucipir SUVr values demonstrated significant inverse correlations with cognitive scores in domain-specific patterns. Findings support the hypothesis that PET imaging of neuropathologic tau deposits may reflect underlying neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Ovillos Neurofibrilares/patología , Anciano , Anciano de 80 o más Años , Carbolinas , Cognición , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
5.
JAMA Neurol ; 77(7): 829-839, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338734

RESUMEN

Importance: Positron emission tomography (PET) may increase the diagnostic accuracy and confirm the underlying neuropathologic changes of Alzheimer disease (AD). Objective: To determine the accuracy of antemortem [18F]flortaucipir PET images for predicting the presence of AD-type tau pathology at autopsy. Design, Setting, and Participants: This diagnostic study (A16 primary cohort) was conducted from October 2015 to June 2018 at 28 study sites (27 in US sites and 1 in Australia). Individuals with a terminal illness who were older than 50 years and had a projected life expectancy of less than 6 months were enrolled. All participants underwent [18F]flortaucipir PET imaging, and scans were interpreted by 5 independent nuclear medicine physicians or radiologists. Supplemental autopsy [18F]flortaucipir images and pathological samples were also collected from 16 historically collected cases. A second study (FR01 validation study) was conducted from March 26 to April 26, 2019, in which 5 new readers assessed the original PET images for comparison to autopsy. Main Outcomes and Measures: [18F]flortaucipir PET images were visually assessed and compared with immunohistochemical tau pathology. An AD tau pattern of flortaucipir retention was assessed for correspondence with a postmortem B3-level (Braak stage V or VI) pathological pattern of tau accumulation and to the presence of amyloid-ß plaques sufficient to meet the criteria for high levels of AD neuropathological change. Success was defined as having at least 3 of the 5 readers above the lower bounds of the 95% CI for both sensitivity and specificity of 50% or greater. Results: A total of 156 patients were enrolled in the A16 study and underwent [18F]flortaucipir PET imaging. Of these, 73 died during the study, and valid autopsies were performed for 67 of these patients. Three autopsies were evaluated as test cases and removed from the primary cohort (n = 64). Of the 64 primary cohort patients, 34 (53%) were women and 62 (97%) were white; mean (SD) age was 82.5 (9.6) years; and 49 (77%) had dementia, 1 (2%) had mild cognitive impairment, and 14 (22%) had normal cognition. Prespecified success criteria were met for the A16 primary cohort. The flortaucipir PET scans predicted a B3 level of tau pathology, with sensitivity ranging from 92.3% (95% CI, 79.7%-97.3%) to 100.0% (95% CI, 91.0%-100.0%) and specificity ranging from 52.0% (95% CI, 33.5%-70.0%) to 92.0% (95% CI, 75.0%-97.8%). A high level of AD neuropathological change was predicted with sensitivity of 94.7% (95% CI, 82.7%-98.5%) to 100.0% (95% CI, 90.8%-100.0%) and specificity of 50.0% (95% CI, 32.1%-67.9%) to 92.3% (95% CI, 75.9%-97.9%). The FR01 validation study also met prespecified success criteria. Addition of the supplemental autopsy data set and 3 test cases, which comprised a total of 82 patients and autopsies for both the A16 and FR01 studies, resulted in improved specificity and comparable overall accuracy. Among the 156 enrolled participants, 14 (9%) experienced at least 1 treatment-emergent adverse event. Conclusions and Relevance: This study's findings suggest that PET imaging with [18F]flortaucipir could be used to identify the density and distribution of AD-type tau pathology and the presence of high levels of AD neuropathological change, supporting a neuropathological diagnosis of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Autopsia , Carbolinas , Medios de Contraste , Femenino , Humanos , Masculino , Ovillos Neurofibrilares/patología , Neuroimagen/métodos , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología , Radiofármacos , Sensibilidad y Especificidad , Proteínas tau/metabolismo
6.
J Alzheimers Dis ; 71(3): 1037-1048, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31476153

RESUMEN

At autopsy, individuals with Alzheimer's disease (AD) exhibit heterogeneity in the distribution of neurofibrillary tangles in neocortical and hippocampal regions. Subtypes of AD, defined using an algorithm based on the relative number of tangle counts in these regions, have been proposed-hippocampal sparing (relative sparing of the hippocampus but high cortical load), limbic predominant (high hippocampal load but lower load in association cortices), and typical (balanced neurofibrillary tangles counts in the hippocampus and association cortices) AD-and shown to be associated with distinct antemortem clinical phenotypes. The ability to distinguish these AD subtypes from the more typical tau signature in vivo could have important implications for clinical research. Flortaucipir positron emission tomography (PET) images acquired from 45 amyloid-positive participants, defined clinically as mild cognitive impairment or AD, aged 50-92 years, 56% female, and estimated to be Braak V-VI based on their PET pattern of tau pathology, were studied. By translating the neuropathologic algorithm to flortaucipir PET scans, patterns of tau pathology consistent with autopsy findings, and with a similar prevalence, were identified in vivo. 6/45 (13%) participants were identified as hippocampal sparing and 6/45 (13%) as limbic predominant AD subtypes. Hippocampal sparing participants were significantly younger than those assigned to the other two subtypes. Worse performance on delayed recall was associated with increased hippocampal tau signal, and worse performance on the trail making test B-A was associated with lower values of the hippocampus to cortex ratio. Prospective studies can further validate the flortaucipir SUVR cut-points and the phenotype of the corresponding AD subtypes.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/diagnóstico por imagen , Carbolinas , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tauopatías/clasificación , Tauopatías/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Algoritmos , Enfermedad de Alzheimer/psicología , Autopsia , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Sistema Límbico/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estudios Prospectivos , Tauopatías/psicología
7.
Brain ; 142(6): 1723-1735, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009046

RESUMEN

The advent of tau-targeted PET tracers such as flortaucipir (18F) (flortaucipir, also known as 18F-AV-1451 or 18F-T807) have made it possible to investigate the sequence of development of tau in relationship to age, amyloid-ß, and to the development of cognitive impairment due to Alzheimer's disease. Here we report a multicentre longitudinal evaluation of the relationships between baseline tau, tau change and cognitive change, using flortaucipir PET imaging. A total of 202 participants 50 years old or older, including 57 cognitively normal subjects, 97 clinically defined mild cognitive impairment and 48 possible or probable Alzheimer's disease dementia patients, received flortaucipir PET scans of 20 min in duration beginning 80 min after intravenous administration of 370 MBq flortaucipir (18F). On separate days, subjects also received florbetapir amyloid PET imaging, and underwent a neuropsychological test battery. Follow-up flortaucipir scans and neuropsychological battery assessments were also performed at 9 and 18 months. Fifty-five amyloid-ß+ and 90 amyloid-ß- subjects completed the baseline and 18-month study visits and had valid quantifiable flortaucipir scans at both time points. There was a statistically significant increase in the global estimate of cortical tau burden as measured by standardized uptake value ratio (SUVr) from baseline to 18 months in amyloid-ß+ but not amyloid-ß- subjects (least squared mean change in flortaucipir SUVr : 0.0524 ± 0.0085, P < 0.0001 and 0.0007 ± 0.0024 P = 0.7850, respectively), and a significant association between magnitude of SUVr increase and baseline tau burden. Voxel-wise evaluations further suggested that the regional pattern of change in flortaucipir PET SUVr over the 18-month study period (i.e. which regions exhibited the greatest change) also varied as a function of baseline global estimate of tau burden. In subjects with lower global SUVr, temporal lobe regions showed the greatest flortaucipir retention, whereas in subjects with higher baseline SUVr, parietal and frontal regions were increasingly affected. Finally, baseline flortaucipir and change in flortaucipir SUVr were both significantly (P < 0.0001) associated with changes in cognitive performance. Taken together, these results provide a preliminary characterization of the longitudinal spread of tau in Alzheimer's disease and suggest that the amount and location of tau may have implications both for the spread of tau and the cognitive deterioration that may occur over an 18-month period.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/patología , Carbolinas , Disfunción Cognitiva/patología , Demencia/patología , Anciano , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cognición/fisiología , Trastornos del Conocimiento/patología , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteínas tau/metabolismo
8.
Alzheimers Dement (Amst) ; 10: 221-231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780867

RESUMEN

INTRODUCTION: It has been proposed that the signal distribution on tau positron emission tomography (PET) images could be used to define pathologic stages similar to those seen in neuropathology. METHODS: Three topographic staging schemes for tau PET, two sampling the temporal and occipital subregions only and one sampling cortical gray matter across the major brain lobes, were evaluated on flortaucipir F 18 PET images in a test-retest scenario and from Alzheimer's Disease Neuroimaging Initiative 2. RESULTS: All three schemes estimated stages that were significantly associated with amyloid status and when dichotomized to tau positive or negative were 90% to 94% concordant in the populations identified. However, the schemes with fewer regions and simpler decision rules yielded more robust performance in terms of fewer unclassified scans and increased test-retest reproducibility of assigned stage. DISCUSSION: Tau PET staging schemes could be useful tools to concisely index the regional involvement of tau pathology in living subjects. Simpler schemes may be more robust.

9.
J Nucl Med ; 59(6): 944-951, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29191858

RESUMEN

PET imaging of tau pathology in Alzheimer disease may benefit from the use of white matter reference regions. These regions have shown reduced variability compared with conventional cerebellar regions in amyloid imaging. However, they are susceptible to contamination from partial-volume blurring of tracer uptake in the cortex. We present a new technique, PERSI (Parametric Estimation of Reference Signal Intensity), for flortaucipir F 18 count normalization that leverages the advantages of white matter reference regions while mitigating potential partial-volume effects. Methods: Subjects with a clinical diagnosis of Alzheimer disease, mild cognitive impairment, or normal cognition underwent T1-weighted MRI and florbetapir imaging (to determine amyloid [Aß] status) at screening and flortaucipir F 18 imaging at single or multiple time points. Flortaucipir F 18 images, acquired as 4 × 5 min frames 80 min after a 370-MBq injection, were motion-corrected, averaged, and transformed to Montreal Neurological Institute (MNI) space. The PERSI reference region was calculated for each scan by fitting a bimodal gaussian distribution to the voxel-intensity histogram within an atlas-based white matter region and using the center and width of the lower-intensity peak to identify the voxel intensities to be included. Four conventional reference regions were also evaluated: whole cerebellum, cerebellar gray matter, atlas-based white matter, and subject-specific white matter. SUVr (standardized uptake value ratio) was calculated for a statistically defined neocortical volume of interest. Performance was evaluated with respect to test-retest variability in a phase 2 study of 21 subjects (5-34 d between scans). Baseline variability in controls (SD of SUVr and ΔSUVr) and effect sizes for group differences (Cohen d; Aß-positive impaired vs. Aß-negative normal) were evaluated in another phase 2 study with cross-sectional data (n = 215) and longitudinal data (n = 142/215; 18 ± 2 mo between scans). Results: PERSI showed superior test-retest reproducibility (1.84%) and group separation ability (cross-sectional Cohen d = 9.45; longitudinal Cohen d = 2.34) compared with other reference regions. Baseline SUVr variability and ΔSUVr were minimal in Aß control subjects with no specific flortaucipir F 18 uptake (SUVr, 1.0 ± 0.04; ΔSUVr, 0.0 ± 0.02). Conclusion: PERSI reduced variability while enhancing discrimination between diagnostic cohorts. Such improvements could lead to more accurate disease staging and robust measurements of changes in tau burden over time for the evaluation of putative therapies.


Asunto(s)
Carbolinas , Procesamiento de Imagen Asistido por Computador/normas , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones , Estándares de Referencia
10.
J Nucl Med ; 59(6): 937-943, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29284675

RESUMEN

Alzheimer disease (AD) is characterized by ß-amyloid (Aß) plaques and tau neurofibrillary tangles. There are several PET imaging biomarkers for Aß including 11C-PiB and 18F-florbetapir. Recently, PET tracers for tau neurofibrillary tangles have become available and have shown utility in detection and monitoring of neurofibrillary pathology over time. Flortaucipir F 18 is one such tracer. Initial clinical studies indicated greater tau binding in AD and mild cognitive impairment patients than in controls in a pattern consistent with tau pathology observed at autopsy. However, little is known about the reproducibility of such findings. To our knowledge, this study reports the first data regarding test-retest reproducibility of flortaucipir F 18 PET. Methods: Twenty-one subjects who completed the study (5 healthy controls, 6 mild cognitive impairment, and 10 AD) received 370 MBq of flortaucipir F 18 and were imaged for 20 min beginning 80 min after injection and again at 110 min after injection. Follow-up (retest) imaging occurred between 48 h and 4 wk after initial imaging. Images were spatially normalized to Montreal Neurological Institute template space. SUVRs were calculated using AAL (Automated Anatomical Labeling atlas) volumes of interest (VOIs) for parietal, temporal, occipital, anterior, and posterior hippocampal, parahippocampal, and fusiform regions, as well as a posterior neocortical VOI composed of average values from parietal, temporal, and occipital areas. Further, a VOI derived by discriminant analysis that maximally separated diagnostic groups (multiblock barycentric discriminant analysis [MUBADA]) was used. All VOIs were referenced to a subsection of cerebellar gray matter (cere-crus) as well as a parametrically derived white matter-based reference region (parametric estimate of reference signal intensity [PERSI]). t test, correlation analyses, and intraclass correlation coefficient were used to explore test-retest performance. Results: Test-retest analyses demonstrated low variability in flortaucipir F 18 SUVR. The SD of mean percentage change between test and retest using the PERSI reference region was 2.22% for a large posterior neocortical VOI, 1.84% for MUBADA, 1.46% for frontal, 1.98% for temporal, 2.28% for parietal, and 3.27% for occipital VOIs. Further, significant correlations (R2 > 0.85; P < 0.001) were observed for all regions, and intraclass correlation coefficient values (test-retest consistency) were greater than 0.92 for all regions. Conclusion: Significant test-retest reproducibility for flortaucipir F 18 was found across neocortical and mesial temporal lobe structures. These preliminary data suggest that flortaucipir F 18 tau imaging could be used to examine changes in tau burden over time.


Asunto(s)
Carbolinas , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
11.
Phys Med Biol ; 57(3): 685-701, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22241591

RESUMEN

A new method of compensating for tissue-fraction and count-spillover effects, which require tissue segmentation only within a small volume surrounding the primary lesion of interest, was evaluated for SPECT imaging. Tissue-activity concentration estimates are obtained by fitting the measured projection data to a statistical model of the segmented tissue projections. Multiple realizations of two simulated human-torso phantoms, each containing 20 spherical 'tumours', 1.6 cm in diameter, with tumour-to-background ratios of 8:1 and 4:1, were simulated. Estimates of tumour- and background-activity concentration values for homogeneous as well as inhomogeneous tissue activities were compared to the standard uptake value (SUV) metrics on the basis of accuracy and precision. For perfectly registered, high-contrast, superficial lesions in a homogeneous background without scatter, the method yielded accurate (<0.4% bias) and precise (<6.1%) recovery of the simulated activity values, significantly outperforming the SUV metrics. Tissue inhomogeneities, greater tumour depth and lower contrast ratios degraded precision (up to 11.7%), but the estimates remained almost unbiased. The method was comparable in accuracy but more precise than a well-established matrix inversion approach, even when errors in tumour size and position were introduced to simulate moderate inaccuracies in segmentation and image registration. Photon scatter in the object did not significantly affect the accuracy or precision of the estimates.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Algoritmos , Simulación por Computador , Medios de Contraste/farmacología , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Método de Montecarlo , Distribución Normal , Fantasmas de Imagen , Fotones , Distribución de Poisson , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos
12.
IEEE Trans Med Imaging ; 31(2): 405-16, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21965196

RESUMEN

We have developed a new method of compensating for effects of partial volume and spillover in dual-modality imaging. The approach requires segmentation of just a few tissue types within a small volume-of-interest (VOI) surrounding a lesion; the algorithm estimates simultaneously, from projection data, the activity concentration within each segmented tissue inside the VOI. Measured emission projections were fitted to the sum of resolution-blurred projections of each such tissue, scaled by its unknown activity concentration, plus a global background contribution obtained by reprojection through the reconstructed image volume outside the VOI. The method was evaluated using multiple-pinhole µSPECT data simulated for the MOBY mouse phantom containing two spherical lung tumors and one liver tumor, as well as using multiple-bead phantom data acquired on µSPECT and µCT scanners. Each VOI in the simulation study was 4.8 mm (12 voxels) cubed and, depending on location, contained up to four tissues (tumor, liver, heart, lung) with different values of relative (99m)Tc concentration. All tumor activity estimates achieved bias after ∼ 15 ordered-subsets expectation maximization (OSEM) iterations (×10 subsets) , with better than 8% precision ( ≤ 25% greater than the Cramer-Rao lower bound). The projection-based fitting approach also outperformed three standardized uptake value (SUV)-like metrics, one of which was corrected for count spillover. In the bead phantom experiment, the mean ± standard deviation of the bias of VOI estimates of bead concentration were 0.9±9.5%, comparable to those of a perturbation geometric transfer matrix (pGTM) approach (-5.4±8.6%); however, VOI estimates were more stable with increasing iteration number than pGTM estimates, even in the presence of substantial axial misalignment between µCT and µSPECT image volumes.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neoplasias/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Ratones , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
13.
Phys Med Biol ; 56(21): 6983-7000, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22008861

RESUMEN

Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer­Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/instrumentación , Neoplasias/patología , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/diagnóstico por imagen , Radiografía , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/métodos , Torso/diagnóstico por imagen , Torso/patología
14.
Phys Med Biol ; 56(8): 2459-80, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21441651

RESUMEN

We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm(3)) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [(11)C]raclopride and 2-deoxy-2-[(18)F]fluoro-D-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Calibración , Femenino , Fluorodesoxiglucosa F18 , Corazón/diagnóstico por imagen , Corazón/fisiología , Lutecio , Imagen por Resonancia Magnética/instrumentación , Masculino , Ratones , Tomografía de Emisión de Positrones/instrumentación , Racloprida , Radioisótopos , Radiofármacos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Silicatos
15.
Nat Methods ; 8(4): 347-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21399637

RESUMEN

Positron emission tomography (PET) neuroimaging and behavioral assays in rodents are widely used in neuroscience. PET gives insights into the molecular processes of neuronal communication, and behavioral methods analyze the actions that are associated with such processes. These methods have not been directly integrated, because PET studies in animals have until now required general anesthesia to immobilize the subject, which precludes behavioral studies. We present a method for imaging awake, behaving rats with PET that allows the simultaneous study of behavior. Key components include the 'rat conscious animal PET' or RatCAP, a miniature portable PET scanner that is mounted on the rat's head, a mobility system that allows considerable freedom of movement, radiotracer administration techniques and methods for quantifying behavior and correlating the two data sets. The simultaneity of the PET and behavioral data provides a multidimensional tool for studying the functions of different brain regions and their molecular constituents.


Asunto(s)
Conducta Animal/fisiología , Mapeo Encefálico/instrumentación , Encéfalo/fisiología , Tomografía de Emisión de Positrones/instrumentación , Ratas/fisiología , Animales , Mapeo Encefálico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...