RESUMEN
Macrophages are important effectors of inflammation resolution that contribute to the elimination of pathogens and apoptotic cells and restoration of homeostasis. Pre-clinical studies have evidenced the anti-inflammatory and pro-resolving actions of GILZ (glucocorticoid-induced leucine zipper). Here, we evaluated the role of GILZ on the migration of mononuclear cells under nonphlogistic conditions and Escherichia coli-evoked peritonitis. TAT-GILZ (a cell-permeable GILZ-fusion protein) injection into the pleural cavity of mice induced monocyte/macrophage influx alongside increased CCL2, IL-10 and TGF-ß levels. TAT-GILZ-recruited macrophages showed a regulatory phenotype, exhibiting increased expression of CD206 and YM1. During the resolving phase of E. coli-induced peritonitis, marked by an increased recruitment of mononuclear cells, lower numbers of these cells and CCL2 levels were found in the peritoneal cavity of GILZ-deficient mice (GILZ-/-) when compared to WT. In addition, GILZ-/- showed higher bacterial loads, lower apoptosis/efferocytosis counts and a lower number of macrophages with pro-resolving phenotypes. TAT-GILZ accelerated resolution of E. coli-evoked neutrophilic inflammation, which was associated with increased peritoneal numbers of monocytes/macrophages, enhanced apoptosis/efferocytosis counts and bacterial clearance through phagocytosis. Taken together, we provided evidence that GILZ modulates macrophage migration with a regulatory phenotype, inducing bacterial clearance and accelerating the resolution of peritonitis induced by E. coli.
Asunto(s)
Infecciones por Escherichia coli , Peritonitis , Factores de Transcripción , Animales , Ratones , Escherichia coli/metabolismo , Infecciones por Escherichia coli/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Peritonitis/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Ethanol abuse is a risk factor for the development of pneumonia caused by Streptococcus pneumoniae, a critical pathogen for public health. The aim of this article was to investigate the inflammatory mechanisms involved in pneumococcal pneumonia that may be associated with chronic ethanol exposure. Male C57BL6/J-Unib mice were exposed to 20% (v/v) ethanol for twelve weeks and intranasally infected with 5x104 CFU of S. pneumoniae. Twenty-four hours after infection, lungs, bronchoalveolar lavage and blood samples were obtained to assess the consequences of chronic ethanol exposure during infection. Alcohol-fed mice showed increased production of nitric oxide and CXCL1 in alveoli and plasma during pneumococcal pneumonia. Beside this, ethanol-treated mice exhibited a decrease in leukocyte infiltration into the alveoli and reduced frequency of severe lung inflammation, which was associated with an increase in bacterial load. Curiously, no changes were observed in survival after infection. Taken together, these results demonstrate that chronic ethanol exposure alters the inflammatory response during S. pneumoniae lung infection in mice with a reduction in the inflammatory infiltrate even in the presence of higher levels of the chemoattractant CXCL1.
Asunto(s)
Neumonía Neumocócica , Masculino , Ratones , Animales , Neumonía Neumocócica/microbiología , Etanol/efectos adversos , Óxido Nítrico , Líquido del Lavado Bronquioalveolar , Streptococcus pneumoniae , LeucocitosRESUMEN
Aspergillus fumigatus is a ubiquitous and saprophytic filamentous fungus and the main etiologic agent of aspergillosis. Infections caused by A. fumigatus culminate in a strong inflammatory response that can evolve into respiratory failure and may be lethal in immunocompromised individuals. In the last decades, it has been demonstrated that extracellular vesicles (EVs) elicit a notable biological response in immune cells. EVs carry a variety of biomolecules, therefore are considered potential antigen delivery vehicles. The role of EVs as a strategy for modulating an effective response against infections caused by A. fumigatus remains unexplored. Here we investigate the use of EVs derived from A. fumigatus as an immunization tool to induce a more robust immune response to A. fumigatus pulmonary infection. In order to investigate that, male C57BL/6 mice were immunized with two doses of EVs and infected with A. fumigatus. Pre-exposure of mice to EVs was able to induce the production of specific IgG serum for fungal antigens. Besides that, the immunization with EVs reduced the neutrophilic infiltrate into the alveoli, as well as the extravasation of total proteins and the production of proinflammatory mediators IL-1ß, IL-6, and CXCL-1. In addition, immunization prevented extensive lung tissue damage and also improved phagocytosis and fungus clearance. Noteworthy, immunization with EVs, associated with subclinical doses of Amphotericin B (AmB) treatment, rescued 50% of mice infected with A. fumigatus from lethal fungal pneumonia. Therefore, the present study shows a new role for A. fumigatus EVs as host inflammatory response modulators, suggesting their use as immunizing agents.
Asunto(s)
Aspergilosis , Vesículas Extracelulares , Aspergilosis Pulmonar , Animales , Aspergillus fumigatus , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Pneumonia is a leading cause of morbidity and mortality. While inflammation is a host protective response that ensures bacterial clearance, a finely regulated response is necessary to prevent bystander tissue damage. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a GC-induced protein with anti-inflammatory and proresolving bioactions, yet the therapeutical role of GILZ in infectious diseases remains unexplored. Herein, we investigate the role and effects of GILZ during acute lung injury (ALI) induced by LPS and Streptococcus pneumoniae infection. GILZ deficient mice (GILZ-/-) presented more severe ALI, characterized by increased inflammation, decreased macrophage efferocytosis and pronounced lung damage. In contrast, pulmonary inflammation, and damage were attenuated in WT mice treated with TAT-GILZ fusion protein. During pneumococcal pneumonia, TAT-GILZ reduced neutrophilic inflammation and prevented the associated lung damage. There was also enhanced macrophage efferocytosis and bacterial clearance in TAT-GILZ-treated mice. Mechanistically, TAT-GILZ enhanced macrophage phagocytosis of pneumococcus, which was lower in GILZ-/- macrophages. Noteworthy, early treatment with TAT-GILZ rescued 30% of S. pneumoniae-infected mice from lethal pneumonia. Altogether, we present evidence that TAT-GILZ enhances host resilience and resistance to pneumococcal pneumonia by controlling pulmonary inflammation and bacterial loads leading to decreased lethality. Exploiting GILZ pathways holds promise for the treatment of severe respiratory infections.
Asunto(s)
Neumonía Neumocócica , Animales , Glucocorticoides/farmacología , Inflamación/metabolismo , Leucina Zippers , Ratones , Neumonía Neumocócica/complicaciones , Neumonía Neumocócica/tratamiento farmacológico , Streptococcus pneumoniae/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Chronic ethanol consumption is a leading cause of mortality worldwide, with higher risks to develop pulmonary infections, including Aspergillus infections. Mechanisms underlying increased susceptibility to infections are poorly understood. Chronic ethanol consumption induced increased mortality rates, higher Aspergillus fumigatus burden and reduced neutrophil recruitment into the airways. Intravital microscopy showed decrease in leukocyte adhesion and rolling after ethanol consumption. Moreover, downregulated neutrophil activation and increased levels of serum CXCL1 in ethanol-fed mice induced internalization of CXCR2 receptor in circulating neutrophils. Bone marrow-derived neutrophils from ethanol-fed mice showed lower fungal clearance and defective reactive oxygen species production. Taken together, results showed that ethanol affects activation, recruitment, phagocytosis and killing functions of neutrophils, causing susceptibility to pulmonary A. fumigatus infection. This study establishes a new paradigm in innate immune response in chronic ethanol consumers.
Alcoholism is a chronic disease that has many damaging effects on the body. Over long periods, excessive alcohol intake weakens the immune system, putting consumers at increased risk of getting lung infections such as pneumonia. Some forms of pneumonia can be caused by the fungus Aspergillus fumigatus. This microbe does not tend to be a problem for healthy individuals, but it can be fatal for those with impaired immune systems. Here, Malacco et al. wanted to find out why excessive alcohol consumers are more prone to pneumonia. To test this, the researchers used two groups of mice that were either fed plain water or water containing ethanol. After 12 weeks, both groups were infected with Aspergillus fumigatus. The results showed that alcohol-fed mice were more susceptible to the infection caused by strong inflammation of the lungs. Normally, the immune system confronts a lung infection by activating a group of defense cells called neutrophils, which travel through the blood system to the infection site. Once in the right spot, neutrophils get to work by releasing toxins that kill the fungus. Malacco et al. discovered that after chronic alcohol consumption, neutrophils were less reactive to inflammatory signals and less likely to reach the lungs. They were also less effective in dealing with the infection. Neutrophil released fewer toxins and were thus less able to kill the microbial cells. These findings demonstrate for the first time how alcohol can affect immune cells during infection and pave the way for new possibilities to prevent fatal lung infections in excessive alcohol consumers. A next step would be to identify how alcohol acts on other processes in the body and to find a way to modulate or even revert the changes it causes.
Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Etanol/efectos adversos , Enfermedades Pulmonares Fúngicas/inmunología , Neutrófilos/efectos de los fármacos , Enfermedad Aguda , Animales , Aspergilosis/inducido químicamente , Aspergilosis/patología , Antígeno CD11b/metabolismo , Quimiotaxis/efectos de los fármacos , Citocinas/inmunología , Susceptibilidad a Enfermedades , Inflamación/inducido químicamente , Selectina L/metabolismo , Enfermedades Pulmonares Fúngicas/inducido químicamente , Enfermedades Pulmonares Fúngicas/microbiología , Enfermedades Pulmonares Fúngicas/patología , Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Fagocitosis/efectos de los fármacos , Receptores de Interleucina-8B/metabolismo , Estallido Respiratorio/efectos de los fármacosRESUMEN
[This corrects the article DOI: 10.3389/fmicb.2019.02008.].
RESUMEN
Extracellular vesicles (EVs) has been considered an alternative process for intercellular communication. EVs release by filamentous fungi and the role of vesicular secretion during fungus-host cells interaction remain unknown. Here, we identified the secretion of EVs from the pathogenic filamentous fungus, Aspergillus fumigatus. Analysis of the structure of EVs demonstrated that A. fumigatus produces round shaped bilayer structures ranging from 100 to 200 nm size, containing ergosterol and a myriad of proteins involved in REDOX, cell wall remodeling and metabolic functions of the fungus. We demonstrated that macrophages can phagocytose A. fumigatus EVs. Phagocytic cells, stimulated with EVs, increased fungal clearance after A. fumigatus conidia challenge. EVs were also able to induce the production of TNF-α and CCL2 by macrophages and a synergistic effect was observed in the production of these mediators when the cells were challenged with the conidia. In bone marrow-derived neutrophils (BMDN) treated with EVs, there was enhancement of the production of TNF-α and IL-1ß in response to conidia. Together, our results demonstrate, for the first time, that A. fumigatus produces EVs containing a diverse set of proteins involved in fungal physiology and virulence. Moreover, EVs are biologically active and stimulate production of inflammatory mediators and fungal clearance.
RESUMEN
Aspergillus fumigatus is a filamentous fungus which causes invasive pulmonary aspergillosis in immunocompromised individuals. In fungi, cell signaling and cell wall plasticity are crucial for maintaining physiologic processes. In this context, Msb2 is an important signaling mucin responsible for activation of a variety of mitogen-activated protein kinase (MAPK)-dependent signaling pathways that regulate cell growth in several organisms, such as the cell wall integrity (CWI) pathway. Here, we aimed to characterize the MSB2 homologue in A. fumigatus Our results showed that MsbA plays a role in the vegetative and reproductive development of the fungus, in stress adaptation, and in resistance to antifungal drugs by modulating the CWI pathway gene expression. Importantly, cell wall composition is also responsible for activation of diverse receptors of the host immune system, thus leading to a proper immune response. In a model of acute Aspergillus pulmonary infection, results demonstrate that the ΔmsbA mutant strain induced less inflammation with diminished cell influx into the lungs and lower cytokine production, culminating in increased lethality rate. These results characterize for the first time the role of the signaling mucin MsbA in the pathogen A. fumigatus, as a core sensor for cell wall morphogenesis and an important regulator of virulence.IMPORTANCEAspergillus fumigatus is an opportunistic fungus with great medical importance. During infection, Aspergillus grows, forming hyphae that colonize the lung tissue and invade and spread over the mammal host, resulting in high mortality rates. The knowledge of the mechanisms responsible for regulation of fungal growth and virulence comprises an important point to better understand fungal physiology and host-pathogen interactions. Msb2 is a mucin that acts as a sensor and an upstream regulator of the MAPK pathway responsible for fungal development in Candida albicans and Aspergillus nidulans Here, we show the role of the signaling mucin MsbA in the pathogen A. fumigatus, as a core sensor for cell wall morphogenesis, fungal growth, and virulence. Moreover, we show that cell wall composition, controlled by MsbA, is detrimental for fungal recognition and clearance by immune cells. Our findings are important for the understanding of how fungal sensors modulate cell physiology.