Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 241: 117548, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37939803

RESUMEN

The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physico-chemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.


Asunto(s)
Cubierta de Hielo , Microbiota , Regiones Antárticas , Hongos/genética , Bacterias/genética , Suelo/química , Microbiología del Suelo
2.
Insects ; 13(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36005329

RESUMEN

Termites have global distributions and play important roles in most ecosystems, often with high nest densities and interesting associations with other organisms. Constrictotermes cyphergaster, is a termite endemic to South America, widely distributed and very conspicuous, and has therefore been considered a good model for filling in gaps in general termite ecology and their relationships with other organisms (e.g., termitophily). A systematic review (content and bibliometric analyses) was used to gather all published scientific knowledge related to C. cyphergaster as well as to observe trends, verify gaps, and direct new perspectives for future studies of this species. We identified 54 studies, of which more than 50% were published in the last five years (28 articles). The majority of the articles investigated the relationships between C. cyphergaster and macroorganisms (44.4%), followed by specific aspects of its biology (25.9%). The collaboration network revealed that links between researchers are still limited and modular, but trending topics have changed over time. Additionally, there are differences in the aims of the studies being carried out in the Caatinga and Cerrado domains, with some information focusing only on one of those environments. Our results show that some gaps in the biology and ecology of C. cyphergaster remain to be explored, although collaborative efforts between researchers open opportunities for suggesting future studies that would make relevant contributions to the general knowledge of termites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...