RESUMEN
Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material. Here, we have developed a human in vitro model that recapitulates key aspects of dopaminergic innervation of the striatum and cortex. These spatially arranged ventral midbrain-striatum-cortical organoids (MISCOs) can be used to study dopaminergic neuron maturation, innervation and function with implications for cell therapy and addiction research. We detail protocols for growing ventral midbrain, striatal and cortical organoids and describe how they fuse in a linear manner when placed in custom embedding molds. We report the formation of functional long-range dopaminergic connections to striatal and cortical tissues in MISCOs, and show that injected, ventral midbrain-patterned progenitors can mature and innervate the tissue. Using these assembloids, we examine dopaminergic circuit perturbations and show that chronic cocaine treatment causes long-lasting morphological, functional and transcriptional changes that persist upon drug withdrawal. Thus, our method opens new avenues to investigate human dopaminergic cell transplantation and circuitry reconstruction as well as the effect of drugs on the human dopaminergic system.
Asunto(s)
Enfermedad de Parkinson , Humanos , Mesencéfalo/anatomía & histología , Mesencéfalo/fisiología , Dopamina , Neuronas Dopaminérgicas , Cuerpo EstriadoRESUMEN
Brain organoid technology has transformed both basic and applied biomedical research and paved the way for novel insights into developmental processes and disease states of the human brain. While the use of brain organoids has been rapidly growing in the past decade, the accompanying bioengineering and biofabrication solutions have remained scarce. As a result, most brain organoid protocols still rely on commercially available tools and culturing platforms that had previously been established for different purposes, thus entailing suboptimal culturing conditions and excessive use of plasticware. To address these issues, we developed a 3D printing pipeline for the fabrication of tailor-made culturing platforms for fluidically connected but spatially separated brain organoid array culture. This all-in-one platform allows all culturing steps-from cellular aggregation, spheroid growth, hydrogel embedding, and organoid maturation-to be performed in a single well plate without the need for organoid manipulation or transfer. Importantly, the approach relies on accessible materials and widely available 3D printing equipment. Furthermore, the developed design principles are modular and highly customizable. As such, we believe that the presented technology can be easily adapted by other research groups and fuel further development of culturing tools and platforms for brain organoids and other 3D cellular systems.
Asunto(s)
Investigación Biomédica , Encéfalo , Humanos , Organoides , Bioingeniería , Impresión TridimensionalRESUMEN
Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.
RESUMEN
Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11â weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.
Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas , Mesencéfalo , Diferenciación Celular/genéticaRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is caused by the degeneration and loss of dopamine (DA) neurons in the ventral midbrain (VM). The focal and progressive degeneration of DA neurons in the VM makes PD a particularly attractive target for cell-based therapies. Human pluripotent stem cells (hPSCs) offer unprecedented opportunities to model the development and functional properties of human DA neurons in a dish. The use of human in vitro models based on hPSCs has empowered studies of VM development and provided access to neurons expressing a particular disease-specific phenotype. Currently, hPSC differentiation is most routinely carried out in monolayer cultures, which do not properly recapitulate cell-cell interactions and the structural complexity of the brain. Moreover, 2D cultures are challenging to maintain long term, as the cells tend to detach from the plate and lose their functional characteristics. This precludes the possibility of mimicking later phases of DA neurogenesis and recreating the complexity of functional neural circuitries. Here, we describe protocols showing how to maintain hPSCs in an undifferentiated state and how to then drive these hPSCs into 3D regionalized VM organoids. After long-term culture, these VM organoids exhibit mature and post-mitotic molecular features, including neuromelanin pigments similar to those released in primate VMs. We also report a protocol describing how to efficiently perform immunohistochemistry and how to detect neuromelanin-containing DA neurons in VM organoids. Together, these protocols provide a 3D in vitro platform that can be used to better understand the molecular mechanisms underlying DA neuron function and disease and may serve as a powerful tool for designing more targeted disease-modifying therapies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Human pluripotent stem cell culture Basic Protocol 2: hPS cell differentiation for the generation of human ventral midbrain organoids Basic Protocol 3: Characterization of ventral midbrain organoids.
Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Animales , Dopamina , Neuronas Dopaminérgicas , Humanos , Mesencéfalo , OrganoidesRESUMEN
The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.
Asunto(s)
Redes Reguladoras de Genes , Organoides , Encéfalo/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.
Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Organoides/crecimiento & desarrollo , Encéfalo/citología , Humanos , Neurogénesis , Neuronas/citología , Organoides/citología , Organoides/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , TranscriptomaRESUMEN
Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson's disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are not amenable to being reproduced in animal models. The establishment of human cell-based systems combined with advanced computational single-cell transcriptomics holds great promise for decoding the mechanisms underlying maturation and diversification of human DA neurons, and linking their molecular heterogeneity to functions in the midbrain. Human pluripotent stem cells have emerged as a useful tool to recapitulate key molecular features of mature DA neuron subtypes. Here, we review some of the most recent advances and discuss the current challenges in using stem cells, to model human DA biology. We also describe how single cell RNA sequencing may provide key insights into the molecular programs driving DA progenitor specification into mature DA neuron subtypes. Exploiting the state-of-the-art approaches will lead to a better understanding of stem cell-derived DA neurons and their use in disease modeling and regenerative medicine.
Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Enfermedad de Parkinson , Células Madre Pluripotentes/metabolismo , RNA-Seq , Análisis de la Célula Individual , Animales , Neuronas Dopaminérgicas/patología , Humanos , Mesencéfalo/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Células Madre Pluripotentes/patologíaRESUMEN
Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.