Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659895

RESUMEN

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.

2.
Front Vet Sci ; 11: 1282697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468694

RESUMEN

Background: Mesenchymal stem cells provide a valuable treatment option in orthopedic injuries in horses. Objectives: The aim of this study was to evaluate the hematological, biochemical, immunological and immunomodulatory parameters following intralesional treatment with tenogenic primed equine allogeneic peripheral blood-derived mesenchymal stem cells (tpMSCs) in client-owned horses with naturally occurring superficial digital flexor tendon (SDFT) and suspensory ligament (SL) injuries. Methods: The immunogenicity and immunomodulatory capacities of tpMSCs were assessed in a modified mixed lymphocyte reaction, including peripheral blood mononuclear cells (PBMCs) of 14 horses with SDFT and SL injuries after treatment with tpMSCs. In a second study, 18 horses with SDFT and SL injuries received either an intralesional injection with tpMSCs (n = 9) or no treatment (n = 9). Results: The tpMSCs did not provoke a cellular immune response (p < 0.001) and were able to immunomodulate stimulated T lymphocytes (p < 0.001) in vitro. Therapeutic use of tpMSCs did not result in relevant hematologic or biochemical abnormalities. Main limitations: Both studies had a small sample size. No statistical analyses were performed in the second study. Fibrinogen was only analyzed in a single horse prior to treatment. Conclusion: Co-incubation of tpMSCs and PBMCs of horses that have been previously exposed to tpMSCs did not elicit a cellular immune response and tpMSCs were able to immunomodulate stimulated T lymphocytes. Intralesional treatment with tpMSCs did not provoke abnormal changes in hematological and biochemical parameters.

3.
Front Immunol ; 14: 1252374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928528

RESUMEN

Triple-negative breast cancer (TNBC) remains difficult to treat, especially due to ineffective immune responses. Current treatments mainly aim at a cytotoxic effect, whereas (stem) cell therapies are being investigated for their immune stimulatory capacities to initiate the anti-tumor immunity. Here, a thoroughly characterized, homogenous and non-tumorigenic mixture of equine mesenchymal stem cells (eMSCs) harvested from horse peripheral blood as innovative xenogeneic immunomodulators were tested in a 4T1-based intraductal mouse model for TNBC. The eMSCs significantly reduced 4T1 progression upon systemic injection, with induction of inflammatory mediators and T-cell influx in primary tumors, already after a single dose. These xenogeneic anti-cancer effects were not restricted to MSCs as systemic treatment with alternative equine epithelial stem cells (eEpSCs) mimicked the reported disease reduction. Mechanistically, effective eMSC treatment did not rely on the spleen as systemic entrapment site, whereas CD4+ and CD8α+ T-cell infiltration and activation were critical. These results show that eMSCs and potentially also other equine stem cell types can be a valuable TNBC treatment strategy for further (pre)clinical evaluation.


Asunto(s)
Antineoplásicos , Células Madre Mesenquimatosas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Caballos , Animales , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/uso terapéutico , Inmunidad Adaptativa , Transducción de Señal
4.
Arthritis Res Ther ; 25(1): 190, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789403

RESUMEN

BACKGROUND: As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS: This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS: The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION: This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis , Animales , Masculino , Perros , Femenino , Caballos , Estudios de Seguimiento , Distribución Tisular , Inyecciones Intraarticulares , Osteoartritis/patología , Inmunomodulación , Trasplante de Células Madre Mesenquimatosas/métodos
5.
Equine Vet J ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847100

RESUMEN

BACKGROUND: Mesenchymal stem cells are an innovative therapeutic for various equine orthopaedic diseases, including soft tissue injuries. OBJECTIVES: To evaluate the safety and efficacy of tenogenic primed equine allogeneic peripheral blood-derived mesenchymal stem cells (tpMSCs) in horses with naturally occurring superficial digital flexor tendon (SDFT) and suspensory ligament (SL) injuries. STUDY DESIGN: Multicentre, blinded, randomised, placebo-controlled clinical trial. METHODS: One hundred client-owned horses with SDFT and SL injuries were randomised to receive an intralesional tpMSC (66) or saline (34) injection. Clinical and ultrasonographic evaluation was performed before treatment and on Days 56 ± 3 and 112 ± 3 after treatment. Long-term data on re-injury was collected up to 2 years after treatment. RESULTS: Significantly more tpMSC-treated horses achieved improvement in fibre alignment score (FAS) (100% vs. 54.5%, p < 0.001) and echogenicity (97.0% vs. 57.6%, p < 0.001) on Day 112 ± 3, and their lesion size decreased significantly (-27.6 ± 25.91 vs. -4.6 ± 26.64 mm2 , p < 0.001) compared to the placebo group. A FAS = 0 was achieved in 65% of tpMSC-treated horses, as compared to 9% of placebo-treated horses at Day 112 ± 3. The attending veterinarians reported no re-injury in 41 of 53 tpMSC and in 2 of 26 saline-treated horses available for long-term follow-up (p < 0.001). MAIN LIMITATIONS: As this study consisted of client-owned horses, no samples for histology were collected. Long-term follow-up was only available for a subset of enrolled horses. CONCLUSIONS: The intralesional administration of tpMSCs was safe and improved the quality of healing and long-term outcomes in sports horses with naturally occurring SDFT and suspensory injuries.

6.
Prog Neurobiol ; 231: 102532, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37774767

RESUMEN

Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.


Asunto(s)
Carnosina , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Esclerosis Múltiple/tratamiento farmacológico , Cuprizona/efectos adversos , Cuprizona/metabolismo , Carnosina/efectos adversos , Carnosina/metabolismo , Enfermedades Neuroinflamatorias , Vaina de Mielina/patología , Oligodendroglía/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología
7.
Acta Physiol (Oxf) ; 239(1): e14020, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485756

RESUMEN

AIM: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS: Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION: Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.


Asunto(s)
Carnosina , Dipéptidos , Humanos , Ratas , Ratones , Animales , Dipéptidos/química , Dipéptidos/metabolismo , Dipéptidos/farmacología , Carnosina/metabolismo , Carnosina/farmacología , Histidina/química , Histidina/metabolismo , Espectrometría de Masas en Tándem , Antioxidantes
8.
Stem Cells Dev ; 32(11-12): 292-300, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924281

RESUMEN

Osteoarthritis is a frequently occurring joint disorder in veterinary practice. Current treatments are focused on pain and inflammation; however, these are not able to reverse the pathological condition. Mesenchymal stem cells (MSCs) could provide an interesting alternative because of their immunomodulatory properties. The objective of this study was to evaluate the potential of a single intravenous (IV) injection of xenogeneic equine peripheral blood-derived MSCs (epbMSCs) as treatment for articular pain and lameness. Patients with chronic articular pain were injected intravenously with epbMSCs. They were evaluated at three time points (baseline and two follow-ups) by a veterinarian based on an orthopedic joint assessment and an owner canine brief pain inventory scoring. Thirty-five dogs were included in the safety and efficacy evaluation of the study. Results showed that the epbMSC therapy was well tolerated, with no treatment-related adverse events and no increase in articular heat or pain. A significant improvement in lameness, range of motion, joint effusion, pain severity, and interference scores was found 6 weeks post-treatment compared with baseline. This study demonstrates that future research on IV administration of epbMSCs is warranted to further explore its possible beneficial effects in dogs with chronic articular pain and lameness. Clinical Trial gov ID: EC_2018_002.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Perros , Estudios de Factibilidad , Caballos , Inyecciones Intraarticulares/efectos adversos , Inyecciones Intraarticulares/veterinaria , Inyecciones Intravenosas , Cojera Animal/terapia , Cojera Animal/etiología , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Dolor/complicaciones , Dolor/veterinaria
9.
Vet Immunol Immunopathol ; 256: 110547, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621059

RESUMEN

Sarcoids are the most common equine skin tumours Although they do not metastasize, they can be locally aggressive and cause significant clinical symptoms in affected horses. Despite being common, very little is known about the host immune response and the biological mechanisms underlying persistence and recurrence of equine sarcoids. The latter reflects the need for further research in this field. This in-vitro study used sarcoid explants from horses with naturally occurring sarcoids (n = 12) to evaluate the induction of a humoral immune response directed against equine sarcoid-derived bovine papilloma-virus (BPV)- 1 infected fibroblasts using a flow cytometric crossmatch assay. The presence of antibodies against exogenous bovine serum albumin (BSA) and fibroblast-like mesenchymal stromal cells (MSCs) was also evaluated by ELISA and flow cytometry, respectively. The viral load in the sarcoid explants, the corresponding cultured sarcoid fibroblasts, and matched peripheral blood mononuclear cells (PBMCs) from affected horses were determined by quantitative BPV-1/- 2 PCR analysis. Antibodies against autologous sarcoid cells were present in six out of twelve sarcoid-affected horses. Serum from all horses showed cross reactivity with allogeneic sarcoid cells, while only a part reacted with BSA or MSCs. Screening of host PBMCs demonstrated the absence of BPV E1 nucleic acids. Statistical analysis revealed a significantly higher mean viral load in the parental sarcoid tissue compared to the low passage fibroblasts (P < 0.001). These results support the hypothesis that sarcoid-affected horses may develop antibodies recognizing tumour-specific antigens. In contrast to sarcoid explants, equine PBMCs do not seem to contain complete BPV genomes. These results provide a basis for future investigations on the clinical relevance of these antibodies.


Asunto(s)
Enfermedades de los Caballos , Sarcoidosis , Enfermedades de la Piel , Neoplasias Cutáneas , Animales , Caballos , Leucocitos Mononucleares , Neoplasias Cutáneas/veterinaria , Enfermedades de la Piel/veterinaria , Sarcoidosis/veterinaria , Fibroblastos , ADN Viral
10.
Disabil Rehabil ; 45(20): 3293-3302, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36190113

RESUMEN

PURPOSE: Persons with Multiple Sclerosis (PwMS) are physically inactive and spend more time in sedentary behaviours than healthy persons, which increases the risk of developing cardiometabolic diseases. In this randomised crossover study, the cardiometabolic health effects of replacing sitting with light-intensity physical activity (LIPA) and exercise (EX) were investigated. MATERIALS AND METHODS: Twenty-eight mildly disabled PwMS performed four 4-day activity regimens in free-living conditions; CONTROL (habitual activity), SIT, LIPA, and EX. Plasma glucose and insulin (oral glucose tolerance test), plasma lipids, inflammation, resting heart rate, blood pressure, body weight, and perceived exertion were measured (clinical-trials.gov: NCT03919058). RESULTS: CONTROL: 9.7 h sitting/day, SIT: 13.3 h sitting/day, LIPA: 8.3 h sitting, 4.7 h standing, and 2.7 h light-intensity walking/day, and EX: 11.6 h sitting/day with 1.3 h vigorous-intensity cycling. Compared to SIT, improvements (p < 0.001) after LIPA and EX were found for insulin total area under the curve (-17 019 ± 5708 and -23 303 ± 7953 pmol/L*min), insulin sensitivity (Matsuda index +1.8 ± 0.3 and +1.9 ± 0.4) and blood lipids (triglycerides: -0.4 ± 0.1 and -0.5 ± 0.1 mmol/L; non-high-density lipoprotein cholesterol: -0.3 ± 0.1 and -0.5 ± 0.1 mmol/L), with no difference between LIPA and EX. Perceived exertion was higher after EX compared to LIPA (Borg score [6-20]: +2.6 ± 3.3, p = 0.002). CONCLUSION: Replacing sitting with LIPA throughout the day exerts similar cardiometabolic health effects as a vigorous-intensity exercise in PwMS.IMPLICATIONS FOR REHABILITATIONIncreasing light-intensity physical activity (LIPA) throughout the day improves cardiometabolic health to the same extent as one vigorous-intensity exercise sessionIncreasing LIPA induces less exertion than performing a vigorous-intensity exercise.


Asunto(s)
Enfermedades Cardiovasculares , Esclerosis Múltiple , Humanos , Estudios Cruzados , Glucemia , Ejercicio Físico/fisiología , Lípidos , Insulina
11.
Front Vet Sci ; 9: 1035175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504848

RESUMEN

Osteoarthritis (OA) is a highly prevalent condition in dogs, causing a substantial reduction in quality of life and welfare of the animals. Current disease management focusses on pain relief but does not stop the progression of the disease. Therefore, mesenchymal stem cells (MSCs) could offer a promising disease modifying alternative. However, little is known about the behavior and the mode of action of MSCs following their administration. In the current case report, 99mTechnetium labelled xenogeneic equine peripheral blood-derived MSCs were intravenously injected in a 9 year old dog suffering from a natural occurring cranial cruciate ligament rupture. The biodistribution of the MSCs was evaluated during a 6-h follow-up period, using a full body scintigraphy imaging technique. No clinical abnormalities or ectopic tissue formations were detected throughout the study. A radiopharmaceutical uptake was present in the liver, heart, lung, spleen, kidneys and bladder of the dog. Furthermore, homing of the radiolabelled MSCs to the injured joint was observed, with 40.61 % higher uptake in the affected joint in comparison with the healthy contralateral joint. Finally, a local radioactive hotspot was seen at a part of the tail of the dog that had been injured recently. The current study is the first to confirm the homing of xenogeneic MSCs to a naturally occurring joint lesion after IV administration.

12.
Stem Cell Res ; 65: 102963, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36395687

RESUMEN

Injuries to equine tendons and ligaments are career-compromising, causing reduced performance and premature retirement. Promising treatment alternatives have been investigated in the field of mesenchymal stem cells (MSCs). In this study, the tissue adherence and protein expression of tenogenic primed mesenchymal stem cells (tpMSCs) after administration to ex vivo tendon and ligament explants is investigated. First, collagen type I (COL I) and smooth muscle actin (SMA) expression was assessed in cytospins prepared from native MSCs and tpMSCs. Second, equine superficial digital flexor tendon and suspensory ligament explants were cultivated, and a lesion was treated with both cell types. Subsequently, cell adhesion to the explants and the amount of COL I and SMA positive cells was evaluated. The cytospins revealed a significantly higher COL I and lower SMA expression in tpMSCs compared to native MSCs. In the explants, tpMSCs showed a significantly higher tendon and ligament adherence. Furthermore, a significantly higher percentage of COL I positive and a lower percentage of SMA positive cells were observed in the lesions treated with tpMSCs. The results of these explant co-cultures may demonstrate at least a part of the mechanism of action and functional properties of tpMSCs in restoring function to tendons and ligaments.


Asunto(s)
Ligamentos , Células Madre Mesenquimatosas , Caballos , Animales
13.
J Cachexia Sarcopenia Muscle ; 13(5): 2537-2550, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929063

RESUMEN

BACKGROUND: Patients with multiple sclerosis (MS) experience reduced exercise tolerance that substantially reduces quality of life. The mechanisms underpinning exercise intolerance in MS are not fully clear. This study aimed to determine the contributions of the cardiopulmonary system and peripheral muscle in MS-induced exercise intolerance before and after exercise training. METHODS: Twenty-three patients with MS (13 women) and 20 age-matched and sex-matched healthy controls (13 women) performed a cardiopulmonary exercise test. Muscle fibre type composition, size, succinate dehydrogenase (SDH) activity, capillarity, and gene expression and proteins related to mitochondrial density were determined in vastus lateralis muscle biopsies. Nine MS patients (five women) were re-examined following a 12 week exercise training programme consisting of high-intensity cycling interval and resistance training. RESULTS: Patients with MS had lower maximal oxygen uptake compared with healthy controls (V̇O2peak , 25.0 ± 8.5 vs. 35.7 ± 6.4 mL/kg/min, P < 0.001). The lower gas exchange threshold (MS: 14.5 ± 5.5 vs. controls: 19.7 ± 2.9 mL/kg/min, P = 0.01) and slope of V̇O2 versus work rate (MS: 9.5 ± 1.7 vs. controls: 10.8 ± 1.1 mL/min/W, P = 0.01) suggested an intramuscular contribution to exercise intolerance in patients with MS. Muscle SDH activity was 22% lower in MS (P = 0.004), and strongly correlated with several indices of whole-body exercise capacity in MS patients (e.g. V̇O2peak , Spearman's ρ = 0.81, P = 0.002), but not healthy controls (ρ = 0.24, P = 0.38). In addition, protein levels of mitochondrial OXPHOS complexes I (-40%, P = 0.047) and II (-45%, P = 0.026) were lower in MS patients versus controls. Muscle capillary/fibre ratio correlated with V̇O2peak in healthy controls (ρ = 0.86, P < 0.001) but not in MS (ρ = 0.35, P = 0.22), and did not differ between groups (1.41 ± 0.30 vs. 1.47 ± 0.38, P = 0.65). Expression of genes involved in mitochondrial function, such as PPARA, PPARG, and TFAM, was markedly reduced in muscle tissue samples of MS patients (all P < 0.05). No differences in muscle fibre type composition or size were observed between groups (all P > 0.05). V̇O2peak increased by 23% following exercise training in MS (P < 0.001); however, no changes in muscle capillarity, SDH activity, gene or protein expression were observed (all P > 0.05). CONCLUSIONS: Skeletal muscle oxidative phenotype (mitochondrial complex I and II content, SDH activity) is lower in patients with MS, contributing to reduced exercise tolerance. However, skeletal muscle mitochondria appeared resistant to the beneficial effects of exercise training, suggesting that other physiological systems, at least in part, drive the improvements in exercise capacity following exercise training in MS.


Asunto(s)
Tolerancia al Ejercicio , Esclerosis Múltiple , Ejercicio Físico , Tolerancia al Ejercicio/fisiología , Femenino , Humanos , Masculino , Esclerosis Múltiple/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , PPAR gamma/metabolismo , Fenotipo , Calidad de Vida , Succinato Deshidrogenasa/metabolismo
15.
J Neuroinflammation ; 18(1): 255, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740381

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. METHODS: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). RESULTS: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (ß-alanyl-L-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. CONCLUSIONS: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.


Asunto(s)
Acroleína/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Carnosina/farmacología , Enfermedades Neuroinflamatorias/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología
16.
Amino Acids ; 53(11): 1749-1761, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34642824

RESUMEN

Muscle weakness and fatigue are primary manifestations of multiple sclerosis (MS), a chronic disease of the central nervous system. Interventions that enhance muscle function may improve overall physical well-being of MS patients. Recently, we described that levels of carnosine, an endogenous muscle dipeptide involved in contractile function and fatigue-resistance, are reduced in muscle tissue from MS patients and a monophasic rodent MS model (experimental autoimmune encephalomyelitis, EAE). In the present study, we aimed to (1) confirm this finding in a chronic EAE model, along with the characterization of structural and functional muscle alterations, and (2) investigate the effect of carnosine supplementation to increase/restore muscle carnosine levels and improve muscle function in EAE. We performed muscle immunohistochemistry and ex vivo contractility measurements to examine muscle structure and function at different stages of EAE, and following nutritional intervention (oral carnosine: 3, 15 or 30 g/L in drinking water). Immunohistochemistry revealed progressively worsening muscle fiber atrophy and a switch towards a fast-twitch muscle phenotype during EAE. Using ex vivo muscle contractility experiments, we observed reductions in muscle strength and contraction speed, but no changes in muscle fatigability of EAE mice. However, carnosine levels were unaltered during all stages of EAE, and even though oral carnosine supplementation dose-dependently increased muscle carnosine levels up to + 94% after 56 days EAE, this did not improve muscle function of EAE mice. In conclusion, EAE mice display significant, yet time-dependent, muscular alterations, and carnosine intervention does not improve muscle function in EAE.


Asunto(s)
Carnosina/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Músculo Esquelético/fisiopatología , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Humanos , Ratones Endogámicos C57BL , Esclerosis Múltiple/fisiopatología , Contracción Muscular
17.
Vet Immunol Immunopathol ; 239: 110306, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34365135

RESUMEN

OBJECTIVE: The use of mesenchymal stem cells (MSCs) for the treatment of equine joint disease is widely investigated because of their regenerative and immunomodulatory potential. Allogeneic MSCs provide a promising alternative to autologous MSCs, since the former are immediately available and enable a thorough donor screening. However, questions have been raised concerning the immunogenic potential of allogeneic MSCs, especially after repeated administration. METHODS: Current retrospective study assessed the cellular and humoral immunogenicity of ten jumping and dressage horses with naturally occurring degenerative joint disease which were treated 3 times intra-articularly with a 1 mL stem cell suspension containing 1.4-2.5 million chondrogenic induced equine allogeneic peripheral blood-derived MSCs (ciMSCs) combined with 1 mL equine allogeneic plasma. Stem cells from 2 donor horses were used. Horses were clinically evaluated for joint effusion, presence of pain to palpation and skin surface temperature at the local injection site, joint range of motion, occurrence of adverse events and the presence of ectopic tissue. The cellular immune response was analyzed using a modified mixed lymphocyte reaction and the humoral immune response was investigated using a flow cytometric crossmatch assay by which the presence of alloantibodies against the ciMSCs was evaluated. Presence of anti-bovine serum albumin antibodies was detected via ELISA. RESULTS: Clinical evaluation of the horses revealed no serious adverse effects or suspected adverse drug reactions and no ectopic tissue formation at the local injection site or in other areas of the body. Generally, repeated administration led to a decrease of horses with joint effusion of the affected joint. Pain to palpation, skin surface temperature and joint range of motion did not increase or even decreased after treatment administration. Allogeneic ciMSCs did not induce a cellular immune response and no alloantibodies were detected in the recipients' serum, regardless the presence of BSA antibodies in 70 % of the horses. CONCLUSION: Repeated intra-articular injections with allogeneic equine ciMSCs did not elicit clinically relevant adverse events. Furthermore, current study indicates the absence of a cellular or a humoral immune response following repeated intra-articular injections.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Caballos , Células Madre Mesenquimatosas , Animales , Trasplante de Células Madre Hematopoyéticas/veterinaria , Inmunidad Celular , Inmunidad Humoral , Inyecciones Intraarticulares , Estudios Retrospectivos
18.
Stem Cell Res Ther ; 12(1): 393, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256833

RESUMEN

BACKGROUND: Mesenchymal stem cell treatments in dogs have been investigated as a potential innovative alternative to current conventional therapies for a variety of conditions. So far, the precise mode of action of the MSCs has yet to be determined. The aim of this study was to gain more insights into the pharmacokinetics of MSCs by evaluating their biodistribution in healthy dogs after different injection routes. METHODS: Three different studies were performed in healthy dogs to evaluate the biodistribution pattern of radiolabelled equine peripheral blood-derived mesenchymal stem cells following intravenous, intramuscular and subcutaneous administration in comparison with free 99mTechnetium. The labelling of the equine peripheral blood-derived mesenchymal stem cells was performed using stannous chloride as a reducing agent. Whole-body scans were obtained using a gamma camera during a 24-h follow-up. RESULTS: The labelling efficiency ranged between 59.58 and 83.82%. Free 99mTechnetium accumulation was predominantly observed in the stomach, thyroid, bladder and salivary glands, while following intravenous injection, the 99mTechnetium-labelled equine peripheral blood-derived mesenchymal stem cells majorly accumulated in the liver throughout the follow-up period. After intramuscular and subcutaneous injection, the injected dose percentage remained very high at the injection site. CONCLUSIONS: A distinct difference was noted in the biodistribution pattern of the radiolabelled equine peripheral blood-derived mesenchymal stem cells compared to free 99mTechnetium indicating equine peripheral blood-derived mesenchymal stem cells have a specific pharmacokinetic pattern after systemic administration in healthy dogs. Furthermore, the biodistribution pattern of the used xenogeneic equine peripheral blood-derived mesenchymal stem cells appeared to be different from previously reported experiments using different sources of mesenchymal stem cells.


Asunto(s)
Células Madre Mesenquimatosas , Animales , Perros , Caballos , Inyecciones Intravenosas , Inyecciones Subcutáneas , Tecnecio , Distribución Tisular
19.
Front Vet Sci ; 8: 668881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095280

RESUMEN

Osteoarthritis (OA) is currently an incurable and progressive condition in dogs causing chronic joint pain and possibly increasing disability. Due to the poor healing capacity of cartilage lesions that occur with OA, development of effective therapeutics is difficult. For this reason, current OA therapy is mostly limited to the management of pain and inflammation, but not directed ad disease modification. In the search for a safe and effective OA treatment, mesenchymal stem cells (MSCs) have been of great interest since these cells might be able to restore cartilage defects. The designs of OA studies on MSC usage, however, are not always consistent and complete, which limits a clear evaluation of MSC efficacy. The general study results show a tendency to improve lameness, joint pain and range of motion in dogs suffering from naturally-occurring OA. Assessment of the cartilage surface demonstrated the ability of MSCs to promote cartilage-like tissue formation in artificially created cartilage defects. Immunomodulatory capacities of MSCs also seem to play an important role in reducing pain and inflammation in dogs. It should be mentioned, however, that in the current studies in literature there are specific design limitations and further research is warranted to confirm these findings.

20.
Prev Med ; 148: 106593, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930434

RESUMEN

Cardiometabolic comorbidities are highly prevalent in clinical populations, and have been associated (partly) with their sedentary lifestyle. Although lifestyle interventions targeting sedentary behaviour (SB) have been studied extensively in the general population, the effect of such strategies in clinical populations is not yet clear. Therefore, this systematic review and meta-analysis evaluated the effect of different lifestyle interventions on SB and cardiometabolic health in clinical populations. Randomised controlled trials were collected from five bibliographic databases (PubMed, Embase, Web of Science, The Cochrane Central Register of Controlled Trials, and Scopus). Studies were eligible for inclusion if they evaluated a lifestyle intervention to reduce objectively measured SB, in comparison with a control intervention among persons with a clinical condition. Data were pooled using a random-effects meta-analysis. In total, 7094 studies were identified. Eighteen studies met the inclusion criteria and were categorised in five population groups: overweight/obesity, type 2 diabetes mellitus, cardiovascular, neurological/cognitive and musculoskeletal diseases. Participants reduced their SB by 64 min/day (95%CI: [-91, -38] min/day; p < 0.001), with larger within-group differences of multicomponent behavioural interventions including motivational counselling, self-monitoring, social facilitation and technologies (-89 min/day; 95%CI: [-132, -46] min/day; p < 0.001). Blood glycated haemoglobin concentration (-0.17%; 95% CI: [-0.30, -0.04]%; p = 0.01), fat percentage (-0.66%; 95% CI: [-1.26, -0.06]%, p = 0.03) and waist circumference (-1.52 cm; 95%CI: [-2.84, -0.21] cm; p = 0.02) were significantly reduced in the intervention groups compared to control groups. Behavioural lifestyle interventions reduce SB among clinical populations and improve cardiometabolic risk markers such as waist circumference, fat percentage, and glycaemic control. Sedentary behaviour, Cardiometabolic health, Clinical populations.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/prevención & control , Humanos , Estilo de Vida , Sobrepeso , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA