Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transplant Cell Ther ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871054

RESUMEN

Hematopoietic cell transplantation (HCT) has undergone many advances over the decades. Trends in HCT utilization have been impacted by research based on the data and samples collected by the Center for International Blood and Marrow Transplant Research (CIBMTR). Here, we provide a summary report of the CIBMTR Biorepository resource and describe the biospecimen inventory along with collection and request procedures. The diversity captured in this inventory reflects transplant activity, and these samples can be leveraged for secondary analyses to generate more data and insights to advance the field. We describe how our resources have already impacted HCT practice and elaborate on possibilities for further collaboration and utilization to maximize capabilities and research opportunities. Hematopoietic cell transplant data and biorepository resources at the CIBMTR have been and continue to be leveraged to improve patient outcomes.

2.
Clin Infect Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801746

RESUMEN

BACKGROUND: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS: We conducted a multicenter prospective observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. RESULTS: We enrolled 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), and chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy immunity. CONCLUSIONS: These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation three to four months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T cell therapy.

3.
medRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38343800

RESUMEN

Background: The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective: To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design: Multicenter prospective observational study. Setting: 34 centers in the United States. Participants: 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions: SARS-CoV-2 vaccination as part of routine care. Measurements: We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results: Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations: The majority of participants were adults and received mRNA vaccines. Conclusions: These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

4.
EClinicalMedicine ; 59: 101983, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37128256

RESUMEN

Background: The optimal timing for SARS-CoV-2 vaccines within the first year after allogeneic hematopoietic cell transplant (HCT) is poorly understood. Methods: We conducted a prospective, multicentre, observational study of allogeneic HCT recipients who initiated SARS-CoV-2 vaccinations within 12 months of HCT. Participants were enrolled at 22 academic cancer centers across the United States. Participants of any age who were planning to receive a first post-HCT SARS-CoV-2 vaccine within 12 months of HCT were eligible. We obtained blood prior to and after each vaccine dose for up to four vaccine doses, with an end-of-study sample seven to nine months after enrollment. We tested for SARS-CoV-2 spike protein (anti-S) IgG; nucleocapsid protein (anti-N) IgG; neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains; and SARS-CoV-2-specific T-cell receptors (TCRs). The primary outcome was a comparison of anti-S IgG titers at the post-V2 time point in participants initiating vaccinations <4 months versus 4-12 months after HCT using a propensity-adjusted analysis. We also evaluated factors associated with high-level anti-S IgG titers (≥2403 U/mL) in logistic regression models. Findings: Between April 22, 2021 and November 17, 2021, 175 allogeneic HCT recipients were enrolled in the study, of whom all but one received mRNA SARS-CoV-2 vaccines. SARS-CoV-2 anti-S IgG titers, neutralizing antibody titers, and TCR breadth and depth did not significantly differ at all tested time points following the second vaccination among those initiating vaccinations <4 months versus 4-12 months after HCT. Anti-S IgG ≥2403 U/mL correlated with neutralizing antibody levels similar to those observed in a prior study of non-immunocompromised individuals, and 57% of participants achieved anti-S IgG ≥2403 U/mL at the end-of-study time point. In models adjusted for SARS-CoV-2 infection pre-enrollment, SARS-CoV-2 vaccination pre-HCT, CD19+ B-cell count, CD4+ T-cell count, and age (as applicable to the model), vaccine initiation timing was not associated with high-level anti-S IgG titers at the post-V2, post-V3, or end-of-study time points. Notably, prior graft-versus-host-disease (GVHD) or use of immunosuppressive medications were not associated with high-level anti-S IgG titers. Grade ≥3 vaccine-associated adverse events were infrequent. Interpretation: These data support starting mRNA SARS-CoV-2 vaccination three months after HCT, irrespective of concurrent GVHD or use of immunosuppressive medications. This is one of the largest prospective analyses of vaccination for any pathogen within the first year after allogeneic HCT and supports current guidelines for SARS-CoV-2 vaccination starting three months post-HCT. Additionally, there are few studies of mRNA vaccine formulations for other pathogens in HCT recipients, and these data provide encouraging proof-of-concept for the utility of early vaccination targeting additional pathogens with mRNA vaccine platforms. Funding: National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.

5.
Blood Adv ; 4(4): 740-754, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32092137

RESUMEN

Natural killer (NK) cell recognition and killing of target cells are enhanced when inhibitory killer immunoglobulin-like receptors (KIR) are unable to engage their cognate HLA class I ligands. The genes of the KIR locus are organized into either KIR B haplotypes, containing 1 or more activating KIR genes or KIR A haplotypes, which lack those genes. Analysis of unrelated donor (URD) hematopoietic cell transplants (HCT), given to acute myeloid leukemia (AML) patients between 1988 and 2009, showed that KIR B haplotype donors were associated with better outcomes, primarily from relapse protection. Most of these transplants involved marrow grafts, fully myeloablative (MAC) preparative regimens, and significant HLA mismatch. Because the practice of HCT continues to evolve, with increasing use of reduced intensity conditioning (RIC), peripheral blood stem cell grafts, and better HLA match, we evaluated the impact of URD KIR genotype on HCT outcome for AML in the modern era (2010-2016). This analysis combined data from a prospective trial testing URD selection based on KIR genotypes (n = 243) with that from a larger contemporaneous cohort of transplants (n = 2419). We found that KIR B haplotype donors conferred a significantly reduced risk of leukemia relapse and improved disease-free survival after RIC, but not MAC HCT. All genes defining KIR B haplotypes were associated with relapse protection, which was significant only in transplant recipients expressing the C1 epitope of HLA-C. In the context of current HCT practice using RIC, selection of KIR B donors could reduce relapse and improve overall outcome for AML patients receiving an allogeneic HCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Estudios Prospectivos , Acondicionamiento Pretrasplante , Donante no Emparentado
6.
Biol Blood Marrow Transplant ; 25(1): e28-e32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30149149

RESUMEN

We previously reported that acute myelogenous leukemia (AML) transplants using killer cell immunoglobulin-type receptor (KIR) B haplotype better or best (≥2 B activating gene loci ± Cen B/B) unrelated donors (URDs) yield less relapse and better survival. In this prospective trial we evaluated 535 AML searches from 14 participating centers with centralized donor KIR genotyping for donor selection. This represented 3% to 48% of all AML searches (median 20%) per center, totaling 3 to 172 patients (median 22) per center. Donor KIR genotype was reported at a median of 14 days after request (≤26 days for 76% of searches). In 535 searches, 2080 donors were requested for KIR genotyping (mean 4.3 per search); and a median of 1.8 (range, 0 to 4.5) per search were KIR typed. Choosing more donors for confirmatory HLA and KIR haplotype identification enriched the likelihood of finding KIR better or best donors. The search process identified a mean of 30% KIR better or best donors; the success ranged from 24% to 38% in the 11 centers enrolling ≥8 patients. More donors requested for KIR genotyping increased the likelihood of identifying KIR better or best haplotype donors. Of the 247 transplants, 9.3% used KIR best, 19% used KIR better, and 48% used KIR neutral donors while 24% used a non-KIR-tested donor. KIR genotyping did not delay transplantation. The time from search to transplant was identical for transplants using a KIR-genotyped versus a non-KIR-genotyped donor. Prospective evaluation can rapidly identify KIR favorable genotype donors, but choosing more donors per search would substantially increase the likelihood of having a KIR best or better donor available for transplantation. Transplant centers and donor registries must both commit extra effort to incorporate new characteristics (beyond HLA, age, and parity) into improved donor selection. Deliberate efforts to present additional genetic factors for donor selection will require novel procedures.


Asunto(s)
Selección de Donante , Haplotipos , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/terapia , Receptores KIR/genética , Donante no Emparentado , Adolescente , Adulto , Estudios de Factibilidad , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Estudios Prospectivos
7.
PLoS One ; 3(9): e3114, 2008 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-18769591

RESUMEN

BACKGROUND: The choroid plexus (CP) is an epithelial and vascular structure in the ventricular system of the brain that is a critical part of the blood-brain barrier. The CP has two primary functions, 1) to produce and regulate components of the cerebral spinal fluid, and 2) to inhibit entry into the brain of exogenous substances. Despite its importance in neurobiology, little is known about how this structure forms. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show that the transposon-mediated enhancer trap zebrafish line Et(Mn16) expresses green fluorescent protein within a population of cells that migrate toward the midline and coalesce to form the definitive CP. We further demonstrate the development of the integral vascular network of the definitive CP. Utilizing pharmacologic pan-notch inhibition and specific morpholino-mediated knockdown, we demonstrate a requirement for Notch signaling in choroid plexus development. We identify three Notch signaling pathway members as mediating this effect, notch1b, deltaA, and deltaD. CONCLUSIONS AND SIGNIFICANCE: This work is the first to identify the zebrafish choroid plexus and to characterize its epithelial and vasculature integration. This study, in the context of other comparative anatomical studies, strongly indicates a conserved mechanism for development of the CP. Finally, we characterize a requirement for Notch signaling in the developing CP. This establishes the zebrafish CP as an important new system for the determination of key signaling pathways in the formation of this essential component of the vertebrate brain.


Asunto(s)
Plexo Coroideo/embriología , Plexo Coroideo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo , Animales , Transporte Biológico , Barrera Hematoencefálica , Encéfalo/metabolismo , Epitelio/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...