Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1385698, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476333

RESUMEN

[This corrects the article DOI: 10.3389/fphar.2024.1328460.].

2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473860

RESUMEN

Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.


Asunto(s)
Interneuronas , Oxitocina , Ratones , Animales , Potenciales de Acción , Oxitocina/farmacología , Interneuronas/fisiología , Neuronas , Hipocampo , Células Piramidales , Mamíferos
3.
Front Pharmacol ; 15: 1328460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327988

RESUMEN

The inner ear is the organ responsible for hearing and balance. Inner ear dysfunction can be the result of infection, trauma, ototoxic drugs, genetic mutation or predisposition. Often, like for Ménière disease, the cause is unknown. Due to the complex access to the inner ear as a fluid-filled cavity within the temporal bone of the skull, effective diagnosis of inner ear pathologies and targeted drug delivery pose significant challenges. Samples of inner ear fluids can only be collected during surgery because the available procedures damage the tiny and fragile structures of the inner ear. Concerning drug administration, the final dose, kinetics, and targets cannot be controlled. Overcoming these limitations is crucial for successful inner ear precision medicine. Recently, notable advancements in microneedle technologies offer the potential for safe sampling of inner ear fluids and local treatment. Ultrasharp microneedles can reach the inner ear fluids with minimal damage to the organ, collect µl amounts of perilymph, and deliver therapeutic agents in loco. This review highlights the potential of ultrasharp microneedles, combined with nano vectors and gene therapy, to effectively treat inner ear diseases of different etiology on an individual basis. Though further research is necessary to translate these innovative approaches into clinical practice, these technologies may represent a true breakthrough in the clinical approach to inner ear diseases, ushering in a new era of personalized medicine.

4.
Front Cell Neurosci ; 17: 1082010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816855

RESUMEN

Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.

5.
Biomedicines ; 11(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831024

RESUMEN

Pimozide is a conventional antipsychotic drug largely used in the therapy for schizophrenia and Tourette's syndrome. Pimozide is assumed to inhibit synaptic transmission at the CNS by acting as a dopaminergic D2 receptor antagonist. Moreover, pimozide has been shown to block voltage-gated Ca2+ and K+ channels in different cells. Despite its widespread clinical use, pimozide can cause several adverse effects, including extrapyramidal symptoms and cardiac arrhythmias. Dizziness and loss of balance are among the most common side effects of pimozide. By using the patch-clamp whole-cell technique, we investigated the effect of pimozide [3 µM] on K+ channels expressed by chicken embryo vestibular type-II hair cells. We found that pimozide slightly blocks a transient outward rectifying A-type K+ current but substantially increases a delayed outward rectifying K+ current. The net result was a significant hyperpolarization of type-II hair cells at rest and a strong reduction of their response to depolarizing stimuli. Our findings are consistent with an inhibitory effect of pimozide on the afferent synaptic transmission by type-II hair cells. Moreover, they provide an additional key to understanding the beneficial/collateral pharmacological effects of pimozide. The finding that pimozide can act as a K+ channel opener provides a new perspective for the use of this drug.

6.
Front Cell Neurosci ; 16: 806913, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936492

RESUMEN

The maintenance of balance and gaze relies on the faithful and rapid signaling of head movements to the brain. In mammals, vestibular organs contain two types of sensory hair cells, type-I and type-II, which convert the head motion-induced movement of their hair bundles into a graded receptor potential that drives action potential activity in their afferent fibers. While signal transmission in both hair cell types involves Ca2+-dependent quantal release of glutamate at ribbon synapses, type-I cells appear to also exhibit a non-quantal mechanism that is believed to increase transmission speed. However, the reliance of mature type-I hair cells on non-quantal transmission remains unknown. Here we investigated synaptic transmission in mammalian utricular hair cells using patch-clamp recording of Ca2+ currents and changes in membrane capacitance (ΔC m). We found that mature type-II hair cells showed robust exocytosis with a high-order dependence on Ca2+ entry. By contrast, exocytosis was approximately 10 times smaller in type-I hair cells. Synaptic vesicle exocytosis was largely absent in mature vestibular hair cells of CaV1.3 (CaV1.3-/- ) and otoferlin (Otof-/- ) knockout mice. Even though Ca2+-dependent exocytosis was small in type-I hair cells of wild-type mice, or absent in CaV1.3-/- and Otof-/- mice, these cells were able to drive action potential activity in the postsynaptic calyces. This supports a functional role for non-quantal synaptic transmission in type-I cells. The large vesicle pools in type-II cells would facilitate sustained transmission of tonic or low-frequency signals. In type-I cells, the restricted vesicle pool size, together with a rapid non-quantal mechanism, could allow them to sustain high-frequency phasic signal transmission at their specialized large calyceal synapses.

7.
Front Neurosci ; 15: 749483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955713

RESUMEN

Signal transmission by sensory auditory and vestibular hair cells relies upon Ca2+-dependent exocytosis of glutamate. The Ca2+ current in mammalian inner ear hair cells is predominantly carried through Ca V 1.3 voltage-gated Ca2+ channels. Despite this, Ca V 1.3 deficient mice (Ca V 1.3-/- ) are deaf but do not show any obvious vestibular phenotype. Here, we compared the Ca2+ current (I Ca ) in auditory and vestibular hair cells from wild-type and Ca V 1.3-/- mice, to assess whether differences in the size of the residual I Ca could explain, at least in part, the two phenotypes. Using 5 mM extracellular Ca2+ and near-body temperature conditions, we investigated the cochlear primary sensory receptors inner hair cells (IHCs) and both type I and type II hair cells of the semicircular canals. We found that the residual I Ca in both auditory and vestibular hair cells from Ca V 1.3-/- mice was less than 20% (12-19%, depending on the hair cell type and age investigated) compared to controls, indicating a comparable expression of Ca V 1.3 Ca2+ channels in both sensory organs. We also showed that, different from IHCs, type I and type II hair cells from Ca V 1.3-/- mice were able to acquire the adult-like K+ current profile in their basolateral membrane. Intercellular K+ accumulation was still present in Ca V 1.3-/- mice during I K,L activation, suggesting that the K+-based, non-exocytotic, afferent transmission is still functional in these mice. This non-vesicular mechanism might contribute to the apparent normal vestibular functions in Ca V 1.3-/- mice.

8.
Cell Calcium ; 99: 102454, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454368

RESUMEN

The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO and trigger neurovascular coupling (NVC). Neuronal and glial NMDARs may also operate in a flux-independent manner, although it is unclear whether their non-ionotropic mode of action is involved in NVC. Recently, endothelial NMDARs were found to trigger Ca2+-dependent NO production and induce NVC, but the underlying mode of signaling remains elusive. Herein, we report that GluN1 protein, as well as GluN2C and GluN3B transcripts and proteins, were expressed and that NMDA did not elicit inward currents, but induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in the human brain microvascular endothelial cell line, hCMEC/D3. A multidisciplinary approach, including live cell imaging, whole-cell patch-clamp recordings, pharmacological manipulation and gene targeting, revealed that NMDARs increase the [Ca2+]i in a flux-independent manner in hCMEC/D3 cells. The Ca2+ response to NMDA was triggered by endogenous Ca2+ release from the endoplasmic reticulum and the lysosomal Ca2+ stores and sustained by store-operated Ca2+ entry. Unexpectedly, pharmacological and genetic blockade of mGluR1 and mGluR5 dramatically impaired NMDARs-mediated Ca2+ signals. These findings indicate that NMDARs may increase the endothelial [Ca2+]i in a flux-independent manner via group 1 mGluRs. However, imaging of DAF-FM fluorescence revealed that NMDARs may also induce Ca2+-dependent NO release by signaling in a flux-dependent manner. These findings, therefore, shed novel light on the mechanisms whereby brain microvascular endothelium decodes glutamatergic signaling and regulates NVC.


Asunto(s)
Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Humanos , Óxido Nítrico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
9.
Front Cell Neurosci ; 15: 703407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366789

RESUMEN

The perirhinal cortex (PRC) is a polymodal associative region of the temporal lobe that works as a gateway between cortical areas and hippocampus. In recent years, an increasing interest arose in the role played by the PRC in learning and memory processes, such as object recognition memory, in contrast with certain forms of hippocampus-dependent spatial and episodic memory. The integrative properties of the PRC should provide all necessary resources to select and enhance the information to be propagated to and from the hippocampus. Among these properties, we explore in this paper the ability of the PRC neurons to amplify the output voltage to current input at selected frequencies, known as membrane resonance. Within cerebral circuits the resonance of a neuron operates as a filter toward inputs signals at certain frequencies to coordinate network activity in the brain by affecting the rate of neuronal firing and the precision of spike timing. Furthermore, the ability of the PRC neurons to resonate could have a fundamental role in generating subthreshold oscillations and in the selection of cortical inputs directed to the hippocampus. Here, performing whole-cell patch-clamp recordings from perirhinal pyramidal neurons and GABAergic interneurons of GAD67-GFP+ mice, we found, for the first time, that the majority of PRC neurons are resonant at their resting potential, with a resonance frequency of 0.5-1.5 Hz at 23°C and of 1.5-2.8 Hz at 36°C. In the presence of ZD7288 (blocker of HCN channels) resonance was abolished in both pyramidal neurons and interneurons, suggesting that Ih current is critically involved in resonance generation. Otherwise, application of TTx (voltage-dependent Na+ channel blocker) attenuates the resonance in pyramidal neurons but not in interneurons, suggesting that only in pyramidal neurons the persistent sodium current has an amplifying effect. These experimental results have also been confirmed by a computational model. From a functional point of view, the resonance in the PRC would affect the reverberating activity between neocortex and hippocampus, especially during slow wave sleep, and could be involved in the redistribution and strengthening of memory representation in cortical regions.

10.
Physiol Rep ; 8(14): e14509, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32691536

RESUMEN

Mature hair cells transduce information over a wide range of stimulus intensities and frequencies for prolonged periods of time. The efficiency of such a demanding task is reflected in the characteristics of exocytosis at their specialized presynaptic ribbons. Ribbons are electron-dense structures able to tether a large number of releasable vesicles allowing them to maintain high rates of vesicle release. Calcium entry through rapidly activating, non-inactivating CaV 1.3 (L-type) Ca2+ channels in response to cell depolarization causes a local increase in Ca2+ at the ribbon synapses, which is detected by the exocytotic Ca2+ sensors. The Ca2+ dependence of vesicle exocytosis at mammalian vestibular hair cell (VHC) ribbon synapses is believed to be linear, similar to that observed in mature cochlear inner hair cells (IHCs). The linear relation has been shown to correlate with the presence of the Ca2+ sensor synaptotagmin-4 (Syt-4). Therefore, we studied the exocytotic Ca2+ dependence, and the release kinetics of different vesicle pool populations, in Type II VHCs of control and Syt-4 knockout mice using patch-clamp capacitance measurements, under physiological recording conditions. We found that exocytosis in mature control and knockout Type II VHCs displayed a high-order dependence on Ca2+ entry, rather than the linear relation previously observed. Consistent with this finding, the Ca2+ dependence and release kinetics of the ready releasable pool (RRP) of vesicles were not affected by an absence of Syt-4. However, we did find that Syt-4 could play a role in regulating the release of the secondary releasable pool (SRP) in these cells. Our findings show that the coupling between Ca2+ influx and neurotransmitter release at mature Type II VHC ribbon synapses is faithfully described by a nonlinear relation that is likely to be more appropriate for the accurate encoding of low-frequency vestibular information, consistent with that observed at low-frequency mammalian auditory receptors.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Transmisión Sináptica , Sinaptotagminas/genética , Animales , Exocitosis , Ratones , Ratones Noqueados , Modelos Animales , Técnicas de Placa-Clamp/métodos , Sinaptotagminas/metabolismo
11.
Stem Cell Reports ; 14(5): 876-891, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302555

RESUMEN

Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.


Asunto(s)
Cuerpo Estriado/citología , Células Madre Embrionarias Humanas/trasplante , Enfermedad de Huntington/terapia , Células-Madre Neurales/trasplante , Trasplante de Células Madre/métodos , Animales , Células Cultivadas , Cuerpo Estriado/fisiología , Células Madre Embrionarias Humanas/citología , Humanos , Locomoción , Masculino , Células-Madre Neurales/citología , Neurogénesis , Ratas , Regeneración , Sensación , Sustancia Negra/citología , Sustancia Negra/fisiología , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
12.
Front Cell Neurosci ; 13: 178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133808

RESUMEN

Oxytocin is a neuropeptide that plays important peripheral and central neuromodulatory functions. Our data show that, following activation of oxytocin receptors (OtRs) with the selective agonist TGOT (Thr4,Gly7-oxytocin), a significant increase in frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSC) occurred in hippocampal CA1 pyramidal neurons (PYR) in mice. TGOT affected also sIPSC deactivation kinetics, suggesting the involvement of perisynaptic GABAA receptors (GABAARs) as well. By contrast, TGOT did not cause significant changes in frequency, amplitude or deactivation kinetics of miniature IPSC, suggesting that the effects elicited by the agonist are strictly dependent on the firing activity of presynaptic neurons. Moreover, TGOT was able to modulate tonic GABAergic current mediated by extrasynaptic GABAARs expressed by PYRs. Consistently, at spike threshold TGOT induced in most PYRs a significant membrane hyperpolarization and a decrease in firing rate. The source of increased inhibition onto PYRs was represented by stuttering fast-spiking GABAergic interneurons (INs) that directly respond to TGOT with a depolarization and an increase in their firing rate. One putative ionic mechanism underlying this effect could be represented by OtR activation-induced up-modulation of L-type Ca2+ channels. In conclusion, our results indicate that oxytocin can influence the activity of a subclass of hippocampal GABAergic INs and therefore regulate the operational modes of the downstream PYRs by increasing phasic and tonic GABAergic transmission in CA1 region of mouse hippocampus.

13.
J Physiol ; 595(21): 6735-6750, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28862328

RESUMEN

KEY POINTS: Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K+ current, IK,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K+ concentrations, altering the biophysical properties of IK,L . We found that in the absence of the calyx, IK,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of IK,L . ABSTRACT: Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K+ current, IK,L . The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (Veq K+ ). Both the outward and inward K+ currents shifted Veq K+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The 'early' open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the 'native' biophysical properties of IK,L in adult mouse vestibular type I hair cells.


Asunto(s)
Células Ciliadas Vestibulares/fisiología , Activación del Canal Iónico , Canales de Potasio con Entrada de Voltaje/metabolismo , Potenciales de Acción , Regulación Alostérica , Animales , Células Cultivadas , Femenino , Células Ciliadas Vestibulares/metabolismo , Masculino , Ratones , Canales de Potasio con Entrada de Voltaje/química
14.
Neuroscience ; 328: 80-91, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27132230

RESUMEN

Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sordera/metabolismo , Sordera/patología , Células Ciliadas Auditivas Internas/patología , Células Ciliadas Vestibulares/patología , Potenciales de la Membrana/fisiología , Ratones Noqueados , Técnicas de Placa-Clamp , Fotomicrografía , Estereocilios/metabolismo , Estereocilios/patología
16.
Front Cell Neurosci ; 9: 123, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25904847

RESUMEN

Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

17.
Cereb Cortex ; 24(5): 1247-58, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23258346

RESUMEN

The intracellular mechanisms driving postmitotic development of cortical γ-aminobutyric acid (GABA)ergic interneurons are poorly understood. We have addressed the function of Rac GTPases in cortical and hippocampal interneuron development. Developing neurons express both Rac1 and Rac3. Previous work has shown that Rac1 ablation does not affect the development of migrating cortical interneurons. Analysis of mice with double deletion of Rac1 and Rac3 shows that these GTPases are required during postmitotic interneuron development. The number of parvalbumin-positive cells was affected in the hippocampus and cortex of double knockout mice. Rac depletion also influences the maturation of interneurons that reach their destination, with reduction of inhibitory synapses in both hippocampal CA1 and cortical pyramidal cells. The decreased number of cortical migrating interneurons and their altered morphology indicate a role of Rac1 and Rac3 in regulating the motility of cortical interneurons, thus interfering with their final localization. While electrophysiological passive and active properties of pyramidal neurons including membrane capacity, resting potential, and spike amplitude and duration were normal, these cells showed reduced spontaneous inhibitory currents and increased excitability. Our results show that Rac1 and Rac3 contribute synergistically to postmitotic development of specific populations of GABAergic cells, suggesting that these proteins regulate their migration and differentiation.


Asunto(s)
Corteza Cerebral/citología , Neuronas GABAérgicas/fisiología , Hipocampo/citología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , 4-Aminopiridina/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Potenciales Postsinápticos Inhibidores/genética , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ratones , Ratones Noqueados , Piperazinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/genética
18.
Front Cell Neurosci ; 8: 428, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565962

RESUMEN

The function of the enzyme glutamate decarboxylase (GAD) is to convert glutamate in γ-aminobutyric acid (GABA). Glutamate decarboxylase exists as two major isoforms, termed GAD65 and GAD67, that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

19.
Development ; 140(2): 301-12, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250204

RESUMEN

Medium-sized spiny neurons (MSNs) are the only neostriatum projection neurons, and their degeneration underlies some of the clinical features of Huntington's disease. Using knowledge of human developmental biology and exposure to key neurodevelopmental molecules, human pluripotent stem (hPS) cells were induced to differentiate into MSNs. In a feeder-free adherent culture, ventral telencephalic specification is induced by BMP/TGFß inhibition and subsequent SHH/DKK1 treatment. The emerging FOXG1(+)/GSX2(+) telencephalic progenitors are then terminally differentiated, resulting in the systematic line-independent generation of FOXP1(+)/FOXP2(+)/CTIP2(+)/calbindin(+)/DARPP-32(+) MSNs. Similar to mature MSNs, these neurons carry dopamine and A2a receptors, elicit a typical firing pattern and show inhibitory postsynaptic currents, as well as dopamine neuromodulation and synaptic integration ability in vivo. When transplanted into the striatum of quinolinic acid-lesioned rats, hPS-derived neurons survive and differentiate into DARPP-32(+) neurons, leading to a restoration of apomorphine-induced rotation behavior. In summary, hPS cells can be efficiently driven to acquire a functional striatal fate using an ontogeny-recapitulating stepwise method that represents a platform for in vitro human developmental neurobiology studies and drug screening approaches.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Trasplante de Células , Células Madre Embrionarias/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Neuronas GABAérgicas/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Ácido Quinolínico/farmacología , ARN/metabolismo , Ratas , Células Madre/citología , Factores de Tiempo
20.
J Neurochem ; 114(5): 1424-35, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20557424

RESUMEN

Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Oxitocina/fisiología , Animales , Línea Celular , Línea Celular Transformada , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/antagonistas & inhibidores , Ratones , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología , Oxitocina/metabolismo , Canales de Potasio de Rectificación Interna/agonistas , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA