RESUMEN
Dysregulation of emotional arousal is observed in many psychiatric diseases such as schizophrenia, mood and anxiety disorders. The neurotrophic tyrosine kinase receptor type 2 gene (NTRK2) has been associated with these disorders. Here we investigated the relation between genetic variability of NTRK2 and emotional arousal in healthy young subjects in two independent samples (n1=1171; n2=707). In addition, diffusion tensor imaging (DTI) data in a subgroup of 342 participants were used to identify NTRK2-related white-matter structure differences. After correction for multiple testing, we identified a NTRK2 single nucleotide polymorphism associated with emotional arousal in both samples (n1: Pnominal=0.0003, Pcorrected=0.048; n2: Pnominal=0.0141, Pcorrected=0.036). DTI revealed significant, whole-brain corrected correlations between emotional arousal and brain white-matter mean diffusivity (MD), as well as significant, whole-brain corrected NTRK2 genotype-related differences in MD (PFWE<0.05). Our study demonstrates that genetic variability of NTRK2, a susceptibility gene for psychiatric disorders, is related to emotional arousal and-independently-to brain white-matter properties in healthy individuals.
Asunto(s)
Nivel de Alerta/genética , Emociones , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinasas/genética , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Imagen de Difusión Tensora , Femenino , Variación Genética , Genotipo , Voluntarios Sanos , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Receptor trkB , Adulto JovenRESUMEN
BACKGROUND: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (refSNP Cluster Report: rs6265) is a common and functionally relevant single nucleotide polymorphism (SNP). The gene itself, as well as the SNP rs6265, have been implicated in hippocampal learning and memory. However, imaging genetic studies have produced controversial results about the impact of this SNP on hippocampal volumes in healthy subjects. METHODS: We examined the association between the rs6265 polymorphism and hippocampal volume in 643 healthy young subjects using automatic segmentation and subsequently included these data in a meta-analysis based on published studies with 5298 healthy subjects in total. RESULTS: We found no significant association between SNP rs6265 and hippocampal volumes in our sample (g=0.05, p=0.58). The meta-analysis revealed a small, albeit significant difference in hippocampal volumes between genotype groups, such that Met-carriers had slightly smaller hippocampal volumes than Val/Val homozygotes (g=0.09, p=0.04), an association that was only evident when manual (g=0.22, p=0.01) but not automatic tracing approaches (g=0.04, p=0.38) were used. Studies using manual tracing showed evidence for publication bias and a significant decrease in effect size over the years with increasing sample sizes. CONCLUSIONS: This study does not support the association between SNP rs6265 and hippocampal volume in healthy individuals. The weakly significant effect observed in the meta-analysis is mainly driven by studies with small sample sizes. In contrast, our original data and the meta-analysis of automatically segmented hippocampal volumes, which was based on studies with large samples sizes, revealed no significant genotype effect. Thus, meta-analyses of the association between rs6265 and hippocampal volumes should consider possible biases related to measuring technique and sample size.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/anatomía & histología , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Reconocimiento de Normas Patrones Automatizadas , Adulto JovenRESUMEN
Unbiased genome-wide screens combined with imaging data on brain function may identify novel molecular pathways related to human cognition. Here we performed a dense genome-wide screen to identify episodic memory-related gene variants. A genomic locus encoding the brain-expressed beta-catenin-like protein 1 (CTNNBL1) was significantly (P=7 × 10(-8)) associated with verbal memory performance in a cognitively healthy cohort from Switzerland (n=1073) and was replicated in a second cohort from Serbia (n=524; P=0.003). Gene expression studies showed CTNNBL1 genotype-dependent differences in beta-catenin-like protein 1 mRNA levels in the human cortex. Functional magnetic resonance imaging in 322 subjects detected CTNNBL1 genotype-dependent differences in memory-related brain activations. Converging evidence from independent experiments and different methodological approaches suggests a role for CTNNBL1 in human memory.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Expresión Génica/genética , Memoria/fisiología , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Proteínas Nucleares/metabolismo , Oxígeno/sangre , ARN Mensajero/metabolismo , Serbia , Suiza , Aprendizaje Verbal/fisiologíaRESUMEN
The functional Val158Met polymorphism in the gene coding for the catechol-O-methyltransferase (COMT), the major enzyme degrading the catecholaminergic neurotransmitters dopamine, norepinephrine, and epinephrine, has been associated with differential reactivity in limbic and prefrontal brain areas in response to aversive stimuli. However, studies on COMT-genotype effects on activity of the amygdala, a brain region centrally involved in affective processing, have yielded inconsistent results. Here we investigated the impact of the COMT Val158Met polymorphism on amygdala activity and connectivity during processing of emotional and neutral pictures using functional magnetic resonance imaging (fMRI) in 56 healthy participants. Homozygosity for the low-activity Met allele was positively correlated with increased activation in the right amygdala in response to unpleasant, but not pleasant pictures. In addition, the Met allele exerted an additive effect on the positive connectivity between the right amygdala and orbitofrontal regions. Our results support previous reports of a COMT-genotype-dependent difference in amygdala responsivity as well as connectivity, and highlight the importance of naturally occurring genetic variations in the catecholaminergic system for neural activity underlying affective processing.
Asunto(s)
Amígdala del Cerebelo/fisiología , Catecol O-Metiltransferasa/genética , Emociones/fisiología , Imagen por Resonancia Magnética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Femenino , Genotipo , Humanos , Masculino , Vías Nerviosas/fisiología , Adulto JovenRESUMEN
Emotionally arousing events are typically well remembered, but there is a large interindividual variability for this phenomenon. We have recently shown that a functional deletion variant of ADRA2B, the gene encoding the alpha2b-adrenergic receptor, is related to enhanced emotional memory in healthy humans and enhanced traumatic memory in war victims. Here, we investigated the neural mechanisms of this effect in healthy participants by using fMRI. Carriers of the ADRA2B deletion variant exhibited increased activation of the amygdala during encoding of photographs with negative emotional valence compared with noncarriers of the deletion. Additionally, functional connectivity between amygdala and insula was significantly stronger in deletion carriers. The present findings indicate that the ADRA2B deletion variant is related to increased responsivity and connectivity of brain regions implicated in emotional memory.