Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Virus Res ; 324: 199031, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587871

RESUMEN

BK virus (BKPyV) is a causative agent of BKPyV-associated nephropathy and graft rejections in kidney transplant patients. It establishes persistent infection in the kidneys, which can lead to reactivation in an immunosuppressed state or transmission to kidney recipients. Complications in the case of donor-derived infections can be caused by differences between the four known BKPyV subtypes, as prior infection with one subtype does not guarantee protection against de novo infection with other subtypes. The recipient and donor pretransplant serotyping is not routinely performed since simple ELISA tests employing antigens derived from the major viral capsid protein 1 (VP1) are hindered by the high cross-reactivity of anti-VP1 antibodies against all subtypes. Identifying subtype-specific epitopes in VP1 could lead to the design of specific antigens and the improvement of serodiagnostics for kidney transplantation. We aimed to study the surface residues responsible for the interactions with the subtype-specific antibodies by focusing on the DE and EF loops of VP1, which have only a small number of distinct amino acid differences between the most common subtypes, BKPyV-I and BKPyV-IV. We designed two mutant virus-like particles (VLPs): we introduced BKPyV-I characteristic amino acid residues (either H139N in the DE loop or D175E and I178V changes in the EF loop) into the base sequence of a BKPyV-IV VP1. This way, we created BKPyV-IV mutant VLPs with the sequence of either the BKPyV-I DE loop or the BKPyV-I EF loop. These mutants were then used as competing antigens in an antigen competition assay with a panel of patient sera, and changes in antibody reactivity were assessed by ELISA. We found that the changes introduced into the BKPyV-IV VP1 EF loop restrict antibody recognition in most samples and that converting the BKPyV-IV DE loop into its BKPyV-I equivalent attracts anti-VP1 BKPyV-I antibodies. Although our results did not lead to the discovery of a subtype-specific epitope on the VP1, they suggested that the arrangement of the EF loop in VP1 might dictate the mode of interaction between virus and anti-VP1 antibodies in general and that the interactions between the antibodies and the viral capsid might be very complex. Consequently, an antigen competition assay as an assay to distinguish between BKPyV serotypes might prove difficult to interpret.


Asunto(s)
Virus BK , Enfermedades Renales , Trasplante de Riñón , Humanos , Riñón , Ensayo de Inmunoadsorción Enzimática , Serotipificación
2.
Int J Pharm ; 611: 121308, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34800617

RESUMEN

The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.


Asunto(s)
Péptidos de Penetración Celular , Animales , Bioensayo , Cationes , Citosol , Histidina , Ratones
3.
Vitam Horm ; 117: 47-76, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34420585

RESUMEN

Cell-penetrating peptides (CPPs) are a promising tool for the intracellular delivery of cargo. Due to their ability to cross membranes while also cotransporting various cargoes, they offer great potential for biomedical applications. Several CPPs have been derived from viral proteins with natural roles in the viral replication cycle that require them to breach or fuse to cellular membranes. Additionally, the ability of viruses to cross membranes makes viruses and virus-based particles a convenient model for research on nanoparticle delivery and nanoparticle-mediated gene therapy. In this chapter, we aim to characterize CPPs derived from both structural and nonstructural viral proteins. Their function as enhancers of viral infection and transduction by viral nanoparticles as well as the main features of viral CPPs employed in intracellular cargo delivery are summarized to emphasize their potential use in nanomedicine.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo
4.
Bioconjug Chem ; 31(5): 1575-1585, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32329599

RESUMEN

Protein corona formation has been regarded as an obstacle to developing diagnostic and therapeutic nanoparticles for in vivo applications. Serum proteins that assemble around nanoparticles can hinder their targeting efficiency. Virus-based nanoparticles should be naturally predisposed to evade such barriers in host organisms. Here, we demonstrate that virus-like particles derived from mouse polyomavirus do not form a rich protein corona. These particles can be efficiently targeted to cells that overproduce transferrin receptors, e.g., cancer cells, by conjugating transferrin to the particle surface. In this study, we provide evidence that the interaction of virus-like particles with their newly assigned target receptor is not obstructed by serum proteins. The particles enter target cells via a clathrin-dependent endocytic pathway that is not naturally used by the virus. Our results support the notion that the natural properties of virus-like particles make them well-suited for development of nanosized theranostic tools resistant to detargeting by protein coronas.


Asunto(s)
Nanopartículas/química , Poliomavirus/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Receptores de Transferrina/metabolismo , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Humanos , Ratones
5.
Int J Pharm ; 576: 119008, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31901358

RESUMEN

Viral nanoparticles represent potential natural versatile platforms for targeted gene and drug delivery. Improving the efficiency of gene transfer mediated by viral vectors could not only enhance their therapeutic potential, but also contribute to understanding the limitations in interactions of nanoparticles with cells and the development of new therapeutic approaches. In this study, four cell-penetrating peptides (CPPs), cationic octaarginine (R8), histidine-rich peptides (LAH4 and KH27K) and fusogenic peptide (FUSO), are investigated for their effect on infection by mouse polyomavirus (MPyV) or on transduction of reporter genes delivered by MPyV or related viral vectors. Peptides noncovalently associated with viral particles enhance gene transfer (with the exception of FUSO). Removal of cellular heparan sulfates by the heparinase does not significantly change the enhancing potential of CPPs. Instead, CPPs influences the physical state of viral particles: R8 slightly destabilizes the intact virus, KH27K induces its aggregation and LAH4 promotes disassembly and aggregation of the particles that massively and rapidly associate with cells. The findings indicate that peptides acting as transduction-enhancing agents of polyomavirus-based nanoparticles modulate their physical state, which can be an important prerequisite for sensitization of cells and determination of the further fate of viral particles inside cells.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Vectores Genéticos , Poliomavirus/metabolismo , Transducción Genética , Virión/metabolismo , Animales , Cápside/metabolismo , Cápside/ultraestructura , Péptidos de Penetración Celular/química , Células HEK293 , Humanos , Ratones , Oligopéptidos/química , Oligopéptidos/metabolismo , Poliomavirus/genética , Poliomavirus/ultraestructura , Virión/genética , Virión/ultraestructura
6.
Materials (Basel) ; 12(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443361

RESUMEN

Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.

7.
J Med Virol ; 91(5): 856-864, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30609063

RESUMEN

Active infection with BK polyomavirus (BKPyV) may cause serious complications in transplantation settings. Recently, the level of BKPyV IgG seroreactivity in graft donors has been shown to predict viremia and BKPyV-associated nephropathy in kidney transplant (KTx) recipients. Pretransplantation testing of the donor and recipient BKPyV serostatus could, therefore, identify patients at high risk. For the development of serological immunoassays, antibody response to the predominant BKPyV subtypes (BKPyV-I and BKPyV-IV) was studied using virus-like particle (VLP)-based enzyme-linked immunosorbent assay (ELISA). VLPs made from the capsid protein, VP1, derived from BKPyV-I and BKPyV-IV subtypes were produced using a baculovirus expression system and used as antigens. The tests were used for IgG antibody determination in 50 KTx recipients and 111 healthy blood donors. While 87% of samples reacted with mixed BKPyV-I and BKPyV-IV antigens, only 49% of samples were reactive in both ELISA tests when using BKPyV-I or BKPyV-IV antigens separately. Twenty-seven percent of healthy blood donors and 26% of KTx recipients were reactive only with BKPyV-I, while 9% and 20% were reactive only with BKPyV-IV, respectively. To determine the specificities of the antigens, selected seropositive samples were retested after preadsorption with soluble BKPyV-I, BKPyV-IV, or JC polyomavirus antigens. The experiments confirmed that recombinant VP1 VLP-based ELISAs predominantly detected BKPyV type-specific antibodies. The results imply that anti-BKPyV antibody ELISA tests should contain a mixture of subtype-specific VLP-based antigens instead of antigen derived from the most prevalent BKPyV-I subtype. The tests can be used for serological surveys of BKPyV infection and improved KTx patient management.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus BK/inmunología , Trasplante de Riñón , Infecciones por Polyomavirus/epidemiología , Receptores de Trasplantes , República Checa/epidemiología , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina G/sangre , Estudios Seroepidemiológicos
8.
Mol Pharm ; 15(8): 2932-2945, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29389139

RESUMEN

Glutamate carboxypeptidase II (GCPII) is a membrane protease overexpressed by prostate cancer cells and detected in the neovasculature of most solid tumors. Targeting GCPII with inhibitor-bearing nanoparticles can enable recognition, imaging, and delivery of treatments to cancer cells. Compared to methods based on antibodies and other large biomolecules, inhibitor-mediated targeting benefits from the low molecular weight of the inhibitor molecules, which are typically stable, easy-to-handle, and able to bind the enzyme with very high affinity. Although GCPII is established as a molecular target, comparing previously reported results is difficult due to the different methodological approaches used. In this work, we investigate the robustness and limitations of GCPII targeting with a diverse range of inhibitor-bearing nanoparticles (various structures, sizes, bionanointerfaces, conjugation chemistry, and surface densities of attached inhibitors). Polymer-coated nanodiamonds, virus-like particles based on bacteriophage Qß and mouse polyomavirus, and polymeric poly(HPMA) nanoparticles with inhibitors attached by different means were synthesized and characterized. We evaluated their ability to bind GCPII and interact with cancer cells using surface plasmon resonance, inhibition assay, flow cytometry, and confocal microscopy. Regardless of the diversity of the investigated nanosystems, they all strongly interact with GCPII (most with low picomolar Ki values) and effectively target GCPII-expressing cells. The robustness of this approach was limited only by the quality of the nanoparticle bionanointerface, which must be properly designed by adding a sufficient density of hydrophilic protective polymers. We conclude that the targeting of cancer cells overexpressing GCPII is a viable approach transferable to a broad diversity of nanosystems.


Asunto(s)
Antineoplásicos/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Nanoconjugados/química , Neoplasias/tratamiento farmacológico , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Química Farmacéutica , Química Clic , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Neoplasias/patología , Proteínas Recombinantes/metabolismo , Tiazolidinas/química
9.
FEBS J ; 284(6): 883-902, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28164464

RESUMEN

The minor structural protein VP2 and its shorter variant, VP3, of mouse polyomavirus (MPyV) are essential for virus exit from the endoplasmic reticulum (ER) during viral trafficking to the nucleus. Here, we followed the role of putative hydrophobic domains (HD) of the minor proteins in membrane affinity and viral infectivity. We prepared variants of VP2, each mutated to decrease hydrophobicity of one of three predicted hydrophobic domains: VP2-mHD1, VP2-mHD2 or VP2-mHD3 mutated in HD1 (amino acids (aa) 60-101), HD2 (aa 125-165) or HD3 (aa 287-307), respectively. Transient production of the mutated proteins revealed that only VP2-mHD2 lost the affinity for intracellular membranes. Cytotoxicity connected with the ability of VP2/VP3 to perforate membranes decreased markedly for VP2-mHD2, but only slightly for VP2-mHD1. The mutant VP2-mHD3 exhibited properties similar to the wild-type protein. MPyV genomes, each carrying one of the mutations, were prepared for virus production. MPyV-mHD1 and MPyV-mHD2 viruses could be isolated, while the HD3 mutation in VP2/VP3 prevented virus assembly. We found that both MPyV-mHD1 and MPyV-mHD2 viruses arrived at the ER without delay and were processed by ER residential enzymes. However, the ability to associate with ER membranes was decreased in the case of MPyV-mHD1 and practically abolished in the case of MPyV-mHD2. Interestingly, while MPyV-mHD2 was not infectious, infection of MPyV-mHD1 virus was delayed. These findings reveal that HD2, common to both VP2 and VP3, is responsible for the membrane binding properties of the minor proteins, while HD1 of VP2 is likely required to stabilize VP2-membrane association and to enhance viral exit from the ER.


Asunto(s)
Proteínas de la Cápside/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Poliomavirus/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , Núcleo Celular/metabolismo , Retículo Endoplásmico/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Poliomavirus/genética , Poliomavirus/patogenicidad , Unión Proteica , Dominios Proteicos
10.
Bioconjug Chem ; 28(2): 307-313, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28035816

RESUMEN

Virus-like particles based on polyomaviruses (PVLPs) are promising delivery devices for various cargoes, including nucleic acids, imaging probes, and therapeutic agents. In biological environments, the major coat protein VP1 interacts with ubiquitously distributed sialic acid residues, and therefore PVLPs show a broad tropism. For selective targeting, appropriate engineering of the PVLP surface is needed. Here, we describe a chemical approach to retarget PVLPs to cancer cells displaying abnormally high levels of transferrin receptor. We created an array of transferrin molecules on the surface of PVLPs by combining a high-yielding bioconjugation approach with specific point modification of transferrin. This artificial surface protein architecture enables (i) suppression of natural VP1-specific interactions by blocking the surface conformational epitope on the VP1 protein, (ii) unusually high cellular uptake efficiency, and (iii) selective retargeting of PVLPs to osteosarcoma (U2OS) and lymphoblastoid leukemia (CCRF-CEM) cells.


Asunto(s)
Cápside/química , Portadores de Fármacos/química , Poliomavirus/química , Transporte Biológico , Cápside/metabolismo , Línea Celular Tumoral , Portadores de Fármacos/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Propiedades de Superficie
11.
Curr Protoc Microbiol ; 38: 14F.1.1-26, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26237106

RESUMEN

Mouse polyomavirus (MPyV) is a member of the Polyomaviridae family, which comprises non-enveloped tumorigenic viruses infecting various vertebrates including humans and causing different pathogenic responses in the infected organisms. Despite the variations in host tropism and pathogenicity, the structure of the virions of these viruses is similar. The capsid, with icosahedral symmetry (ø, 45 nm, T = 7d), is composed of a shell of 72 capsomeres of structural proteins, arranged around the nucleocore containing approximately 5-kbp-long circular dsDNA in complex with cellular histones. MPyV has been one of the most studied polyomaviruses and serves as a model virus for studies of the mechanisms of cell transformation and virus trafficking, and for use in nanotechnology. It can be propagated in primary mouse cells (e.g., in whole mouse embryo cells) or in mouse epithelial or fibroblast cell lines. In this unit, propagation, purification, quantification, and storage of MPyV virions are presented.


Asunto(s)
Poliomavirus/crecimiento & desarrollo , Poliomavirus/aislamiento & purificación , Preservación Biológica/métodos , Carga Viral/métodos , Cultivo de Virus/métodos , Animales , Células Cultivadas , Ratones
12.
Virology ; 450-451: 122-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24503074

RESUMEN

Mouse polyomavirus (MPyV) is considered a potential tool for the application of gene therapy; however, the current knowledge of the encapsulation of DNA into virions is vague. We used a series of assays based on the encapsidation of a reporter vector into MPyV pseudovirions to identify putative cis-acting elements that are involved in DNA encapsidation. None of the sequences that were derived from MPyV have been shown to solely enhance the encapsidation of a reporter vector in the assay. The frequency of encapsidation strongly correlated with the total intracellular amount of the vector after transfection. The encapsidation of target DNA into the pseudovirions was shown to be non-specific, and the packaging of non-replicated DNA was observed. We propose that the actual concentration of target DNA at the sites of virion formation is the primary factor that determines its selection for encapsidation.


Asunto(s)
Cápside/metabolismo , Poliomavirus/fisiología , Virión/fisiología , Ensamble de Virus , Animales , Línea Celular , Genes Reporteros , Terapia Genética/instrumentación , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Humanos , Ratones , Poliomavirus/genética , Virión/genética
13.
Virus Res ; 176(1-2): 128-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23800406

RESUMEN

Murine polyomavirus mutants are frequently produced for experimental as well as therapy purposes. Commonly used methods for preparation of mutant viral genomes from recombinant vectors are laborious and give variable yields and quality. We describe an efficient and reproducible Cre/loxP-mediated recombination system that generates polyomavirus genomes from recombinant plasmid in vivo. We designed and constructed two variants of recombinant vectors containing the wild-type polyomavirus genome flanked by loxP homologous sites. The loxP sites were introduced either into the intronic region of early genes or between the two poly(A) signal sites of convergent transcriptional units. After cotransfection of the recombinant plasmids with the Cre-expressing vector into mouse 3T6 cells, we obtained infectious virus from the genome variant containing loxP site in the intronic region, but we failed to isolate any infectious virus from the viral genome containing loxP site between poly(A) signals. We show that the Cre/loxP-based method of polyomavirus production is simple, expedient, and reproducible and works with satisfactory efficiency.


Asunto(s)
Poliomavirus/crecimiento & desarrollo , Poliomavirus/genética , Recombinación Genética , Virología/métodos , Animales , Línea Celular , Ratones , Biología Molecular/métodos , Plásmidos
14.
FEBS J ; 277(5): 1270-83, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20121946

RESUMEN

Minor structural proteins of mouse polyomavirus (MPyV) are essential for virus infection. To study their properties and possible contributions to cell death induction, fusion variants of these proteins, created by linking enhanced green fluorescent protein (EGFP) to their C- or N-termini, were prepared and tested in the absence of other MPyV gene products, namely the tumor antigens and the major capsid protein, VP1. The minor proteins linked to EGFP at their C-terminus (VP2-EGFP, VP3-EGFP) were found to display properties similar to their nonfused, wild-type versions: they killed mouse 3T3 cells quickly when expressed individually. Carrying nuclear localization signals at their common C-terminus, the minor capsid proteins were detected in the nucleus. However, a substantial subpopulation of both VP2 and VP3 proteins, as well as of the fusion proteins VP2-EGFP and VP3-EGFP, was detected in the cytoplasm, co-localizing with intracellular membranes. Truncated VP3 protein, composed of 103 C-terminal amino acids, exhibited reduced affinity for intracellular membranes and cytotoxicity. Biochemical studies proved each of the minor proteins to be a very potent inducer of apoptosis, which was dependent on caspase activation. Immuno-electron microscopy showed the minor proteins to be associated with damaged membranes of the endoplasmic reticulum, nuclear envelope and mitochondria as soon as 5 h post-transfection. Analysis of apoptotic markers and cell death kinetics in cells transfected with the wild-type MPyV genome and the genome mutated in both VP2 and VP3 translation start codons revealed that the minor proteins contribute moderately to apoptotic processes in the late phase of infection and both are dispensable for cell destruction at the end of the virus replication cycle.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de la Cápside/farmacología , Fibroblastos/virología , Infecciones por Polyomavirus/patología , Poliomavirus , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Ratones , Plásmidos/genética , Factores de Tiempo
15.
Gene ; 286(2): 271-82, 2002 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-11943482

RESUMEN

The paired domain, DNA-binding domain of Pax6 and other Pax transcription factors, is composed of two subdomains (PAI and RED), each recognizing distinct half-sites of the bipartite binding site in adjacent major grooves of the DNA helix. The alternatively spliced Pax6(5a) isoform containing 14 extra amino acids within the PAI domain recognizes the 5aCON sequence consisting of four interdigitated 5' half-sites of the bipartite consensus sequence. A genome database search for similar tetrameric Pax6(A) recognition sequences led to the identification of a Pax6-binding site in the lens-specific enhancer of the mouse E- and F-crystallin genes. This binding site combines the properties of bipartite and tetrameric recognition sequences and, by mutational analysis, is shown to mediate Pax6-dependent regulation of the E- and F-crystallin promoter constructs both in primary chicken lens cells and in chicken embryo fibroblasts. The Pax6-binding site is adjacent to a previously identified retinoic acid response element and is itself required for retinoic acid induction of the F- and E-crystallin genes, suggesting that Pax proteins and retinoic acid receptors cooperate in transcriptional regulation. In summary, our protein-DNA binding and transactivation studies suggest that -crystallin genes are under the control of a multifunctional enhancer element that mediates Pax6 regulation as well as retinoic acid-mediated induction.


Asunto(s)
Cristalinas/genética , Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/fisiología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Tretinoina/farmacología , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión/genética , Células Cultivadas , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación hacia Abajo , Células Epiteliales/metabolismo , Proteínas del Ojo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Cristalino/citología , Cristalino/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Receptores X Retinoide , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA