Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969726

RESUMEN

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Asunto(s)
Chlorella , Hormesis , Metabolismo de los Lípidos , Chlorella/metabolismo , Chlorella/efectos de la radiación , Chlorella/crecimiento & desarrollo , Metabolismo de los Lípidos/efectos de la radiación , Hormesis/efectos de la radiación , Radiación Ionizante , Biomasa
2.
Clin J Oncol Nurs ; 28(4): 380-388, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39041693

RESUMEN

BACKGROUND: Surface contamination with antineoplastic drugs (ADs) is persistent. The use of personal protective equipment (PPE) is recommended to reduce exposure to ADs. OBJECTIVES: This study explored the impact of the COVID-19 pandemic on nurses' PPE use and surface contamination with ADs. METHODS: Demographic characteristics, PPE use, and associated factors were assessed on two inpatient oncology units where etoposide and cyclophosphamide were administered before (N = 26) and during the COVID-19 pandemic (N = 31). FINDINGS: PPE use when handling contaminated excreta was significantly higher during the pandemic. Perceived risk of chemotherapy exposure was significantly associated with greater PPE use when handling AD-contaminated excreta, and conflict of interest was related to less PPE use during AD administration and handling of AD-contaminated excreta. During the pandemic, surface contamination with etoposide increased in shared areas and decreased in patient rooms.


Asunto(s)
Antineoplásicos , COVID-19 , Equipo de Protección Personal , Humanos , COVID-19/prevención & control , Femenino , Masculino , Antineoplásicos/uso terapéutico , Adulto , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Exposición Profesional/prevención & control , Enfermería Oncológica/normas , Etopósido/uso terapéutico , Ciclofosfamida/uso terapéutico , Personal de Enfermería en Hospital
3.
Oncotarget ; 15: 328-344, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758815

RESUMEN

GZ17-6.02 has undergone phase I evaluation in patients with solid tumors (NCT03775525). The RP2D is 375 mg PO BID, with an uveal melanoma patient exhibiting a 15% reduction in tumor mass for 5 months at this dose. Studies in this manuscript have defined the biology of GZ17-6.02 in PDX isolates of uveal melanoma cells. GZ17-6.02 killed uveal melanoma cells through multiple convergent signals including enhanced ATM-AMPK-mTORC1 activity, inactivation of YAP/TAZ and inactivation of eIF2α. GZ17-6.02 significantly enhanced the expression of BAP1, predictive to reduce metastasis, and reduced the levels of ERBB family RTKs, predicted to reduce growth. GZ17-6.02 interacted with doxorubicin or ERBB family inhibitors to significantly enhance tumor cell killing which was associated with greater levels of autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5 or eIF2α were more protective than knock down of ATM, AMPKα, CD95 or FADD, however, over-expression of FLIP-s provided greater protection compared to knock down of CD95 or FADD. Expression of activated forms of mTOR and STAT3 significantly reduced tumor cell killing. GZ17-6.02 reduced the expression of PD-L1 in uveal melanoma cells to a similar extent as observed in cutaneous melanoma cells whereas it was less effective at enhancing the levels of MHCA. The components of GZ17-6.02 were detected in tumors using a syngeneic tumor model. Our data support future testing GZ17-6.02 in uveal melanoma as a single agent, in combination with ERBB family inhibitors, in combination with cytotoxic drugs, or with an anti-PD1 immunotherapy.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/genética , Humanos , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Nat Commun ; 15(1): 3572, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670986

RESUMEN

A regulated stress response is essential for healthy child growth and development trajectories. We conducted a cluster-randomized trial in rural Bangladesh (funded by the Bill & Melinda Gates Foundation, ClinicalTrials.gov NCT01590095) to assess the effects of an integrated nutritional, water, sanitation, and handwashing intervention on child health. We previously reported on the primary outcomes of the trial, linear growth and caregiver-reported diarrhea. Here, we assessed additional prespecified outcomes: physiological stress response, oxidative stress, and DNA methylation (N = 759, ages 1-2 years). Eight neighboring pregnant women were grouped into a study cluster. Eight geographically adjacent clusters were block-randomized into the control or the combined nutrition, water, sanitation, and handwashing (N + WSH) intervention group (receiving nutritional counseling and lipid-based nutrient supplements, chlorinated drinking water, upgraded sanitation, and handwashing with soap). Participants and data collectors were not masked, but analyses were masked. There were 358 children (68 clusters) in the control group and 401 children (63 clusters) in the intervention group. We measured four F2-isoprostanes isomers (iPF(2α)-III; 2,3-dinor-iPF(2α)-III; iPF(2α)-VI; 8,12-iso-iPF(2α)-VI), salivary alpha-amylase and cortisol, and methylation of the glucocorticoid receptor (NR3C1) exon 1F promoter including the NGFI-A binding site. Compared with control, the N + WSH group had lower concentrations of F2-isoprostanes isomers (differences ranging from -0.16 to -0.19 log ng/mg of creatinine, P < 0.01), elevated post-stressor cortisol (0.24 log µg/dl; P < 0.01), higher cortisol residualized gain scores (0.06 µg/dl; P = 0.023), and decreased methylation of the NGFI-A binding site (-0.04; P = 0.037). The N + WSH intervention enhanced adaptive responses of the physiological stress system in early childhood.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Desinfección de las Manos , Saneamiento , Humanos , Femenino , Bangladesh , Masculino , Lactante , Preescolar , Embarazo , Estrés Oxidativo , Estrés Fisiológico , Población Rural , Adulto , Diarrea/prevención & control , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética
5.
Psychoneuroendocrinology ; 164: 107023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522372

RESUMEN

BACKGROUND: Hundreds of millions of children in low- and middle-income countries are exposed to chronic stressors, such as poverty, poor sanitation and hygiene, and sub-optimal nutrition. These stressors can have physiological consequences for children and may ultimately have detrimental effects on child development. This study explores associations between biological measures of chronic stress in early life and developmental outcomes in a large cohort of young children living in rural Bangladesh. METHODS: We assessed physiologic measures of stress in the first two years of life using measures of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol and glucocorticoid receptor gene methylation), the sympathetic-adrenal-medullary (SAM) system (salivary alpha-amylase, heart rate, and blood pressure), and oxidative status (F2-isoprostanes). We assessed child development in the first two years of life with the MacArthur-Bates Communicative Development Inventories (CDI), the WHO gross motor milestones, and the Extended Ages and Stages Questionnaire (EASQ). We compared development outcomes of children at the 75th and 25th percentiles of stress biomarker distributions while adjusting for potential confounders using generalized additive models, which are statistical models where the outcome is predicted by a potentially non-linear function of predictor variables. RESULTS: We analyzed data from 684 children (49% female) at both 14 and 28 months of age; we included an additional 765 children at 28 months of age. We detected a significant relationship between HPA axis activity and child development, where increased HPA axis activity was associated with poor development outcomes. Specifically, we found that cortisol reactivity (coefficient -0.15, 95% CI (-0.29, -0.01)) and post-stressor levels (coefficient -0.12, 95% CI (-0.24, -0.01)) were associated with CDI comprehension score, post-stressor cortisol was associated with combined EASQ score (coefficient -0.22, 95% CI (-0.41, -0.04), and overall glucocorticoid receptor methylation was associated with CDI expression score (coefficient -0.09, 95% CI (-0.17, -0.01)). We did not detect a significant relationship between SAM activity or oxidative status and child development. CONCLUSIONS: Our observations reveal associations between the physiological evidence of stress in the HPA axis with developmental status in early childhood. These findings add to the existing evidence exploring the developmental consequences of early life stress.


Asunto(s)
Desarrollo Infantil , Hidrocortisona , Niño , Humanos , Preescolar , Femenino , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Receptores de Glucocorticoides/metabolismo , Bangladesh , Sistema Hipófiso-Suprarrenal/metabolismo , Biomarcadores/metabolismo , Saliva/metabolismo , Estrés Psicológico/metabolismo
6.
Gynecol Oncol ; 183: 93-102, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38555710

RESUMEN

OBJECTIVE: Uterine serous carcinoma is a highly aggressive non-endometrioid subtype of endometrial cancer with poor survival rates overall, creating a strong need for new therapeutic strategies to improve outcomes. High-dose ascorbate (vitamin C) has been shown to inhibit cell proliferation and tumor growth in multiple preclinical models and has shown promising anti-tumor activity in combination with chemotherapy, with a favorable safety profile. We aimed to study the anti-tumor effects of ascorbate and its synergistic effect with carboplatin on uterine serous carcinoma cells. METHODS: Cell proliferation was evaluated by MTT and colony formation assays in ARK1, ARK2 and SPEC2 cells. Cellular stress, antioxidant ability, cleaved caspase 3 activity and adhesion were measured by ELISA assays. Cell cycle was detected by Cellometer. Invasion was measured using a wound healing assay. Changes in protein expression were determined by Western immunoblotting. RESULTS: High-dose ascorbate significantly inhibited cell proliferation, caused cell cycle arrest, induced cellular stress, and apoptosis, increased DNA damage, and suppressed cell invasion in ARK1 and SPEC2 cells. Treatment of both cells with 1 mM N-acetylcysteine reversed ascorbate-induced apoptosis and inhibition of cell proliferation. The combination of ascorbate and carboplatin produced significant synergistic effects in inhibiting cell proliferation and invasion, inducing cellular stress, causing DNA damage, and enhancing cleaved caspase 3 levels compared to each compound alone in both cells. CONCLUSIONS: Ascorbate has potent antitumor activity and acts synergistically with carboplatin through its pro-oxidant effects. Clinical trials of ascorbate combined with carboplatin as adjuvant treatment of uterine serous carcinoma are worth exploring.


Asunto(s)
Apoptosis , Ácido Ascórbico , Carboplatino , Cistadenocarcinoma Seroso , Sinergismo Farmacológico , Neoplasias Uterinas , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Humanos , Carboplatino/farmacología , Carboplatino/administración & dosificación , Femenino , Línea Celular Tumoral , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/patología , Neoplasias Uterinas/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación
7.
Heliyon ; 10(3): e25578, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356491

RESUMEN

Background: Poor birth outcomes such as preterm birth/delivery disproportionately affect African Americans compared to White individuals. Reasons for this disparity are likely multifactorial, and include prenatal psychosocial stressors, and attendant increased lipid peroxidation; however, empirical data linking psychosocial stressors during pregnancy to oxidative status are limited. Methods: We used established scales to measure five psychosocial stressors. Maternal adverse childhood experiences, financial stress, social support, anxiety, and depression were measured among 50 African American and White pregnant women enrolled in the Stress and Health in Pregnancy cohort. Liquid chromatography-tandem mass spectrometry was used to measure biomarkers of oxidative stress (four urinary F2-isoprostane isomers), to estimate oxidative status. Linear regression models were used to evaluate associations between psychosocial stressors, prenatal oxidative status and preterm birth. Results: After adjusting for maternal obesity, gestational diabetes, and cigarette smoking, African American women with higher oxidative status were more likely to report higher maternal adverse childhood experience scores (ß = 0.16, se = 1.07, p-value = 0.024) and depression scores (ß = 0.05, se = 0.02, p = 0.014). Higher oxidative status was also associated with lower gestational age at birth (ß = -0.13, se = 0.06, p = 0.04) in this population. These associations were not apparent in Whites. However, none of the cross-product terms for race/ethnicity and social stressors reached statistical significance (p > 0.05). Conclusion: While the small sample size limits inference, our novel data suggest that psychosocial stressors may contribute significantly to oxidative stress during pregnancy, and preterm birth or delivery African Americans. If replicated in larger studies, these findings would support oxidative stress reduction using established dietary or pharmacological approaches present a potential avenue to mitigate adverse effects of psychosocial stressors on birth outcomes.

8.
Nat Commun ; 15(1): 730, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272925

RESUMEN

Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX, defining molecular alterations in IDH-mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX-deficient glioma models in the presence and absence of the IDH1R132H mutation. ATRX-deficient glioma cells are sensitive to dsRNA-based innate immune agonism and exhibit impaired lethality and increased T-cell infiltration in vivo. However, the presence of IDH1R132H dampens baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1R132H inhibition. IDH1R132H co-expression does not interfere with the ATRX deficiency-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytomas.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Glioma/genética , Glioma/metabolismo , Astrocitoma/genética , Mutación , Inmunidad Innata/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo
9.
Heliyon ; 9(10): e20761, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37860528

RESUMEN

Every third patient with intracranial meningioma develops seizures of poorly understood etiology. Tumor and peritumoral edema may exert mechanical pressure on the cortex that may affect mechano-gated potassium channels - KCNK2 and KCNK4. These channels regulate neuron excitability and have been related to seizures in some other conditions. The objective of the present study was to explore a potential relation between the levels of these proteins in tumor tissue and adjacent cortex and seizures development. The study included 19 meningioma patients that presented one or more preoperative seizures and 24 patients with no seizures. Tissue samples were collected in the course of surgical removal of the meningioma. Postoperative seizure freedom was achieved in 11 out of 19 patients. The relative level of KCNK2 in the cortical tissue was lower in patients with preoperative seizures. On the other hand, cortical tissue level of KCNK4 was higher in patients that became seizure-free after the surgery. In addition, relative levels of KCNK4 in the cortical and tumor tissue appear to be lowered by the treatment with anti-seizure medication levetiracetam. These results imply that KCNK2 and KCNK4 may be involved in the development of meningioma-related seizures and may represent promising therapeutic targets.

10.
Antioxidants (Basel) ; 12(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891940

RESUMEN

Endovascular mechanical thrombectomy, combined with a tissue plasminogen activator (t-PA), is efficacious as a standard care for qualifying ischemic stroke patients. However, > 50% of thrombectomy patients still have poor outcomes. Manganese porphyrins, commonly known as mimics of superoxide dismutases, are potent redox-active catalytic compounds that decrease oxidative/nitrosative stress and in turn decrease inflammatory responses, mitigating therefore the secondary injury of the ischemic brain. This study investigates the effect of intracarotid MnTnBuOE-2-PyP5+ (BMX-001) administration on long-term, 28-day post-stroke recovery in a clinically relevant setting. The 90 min of transient middle cerebral artery occlusion was performed in young, aged, male, female, and spontaneous hypertension rats. All physiological parameters, including blood pressure, blood gas, glucose, and temperature, were well controlled during ischemia. Either BMX-001 or a vehicle solution was infused through the carotid artery immediately after the removal of filament, mimicking endovascular thrombectomy, and was followed by 7 days of subcutaneous injection. Neurologic deficits and infarct volume were assessed at 28 days in a blinded manner. The effects of BMX-001 on the carotid arterial wall and blood-brain barrier permeability and its interaction with t-PA were assessed in normal rats. There were no intra-group differences in physiological variables. BMX-001-treated stroke rats regained body weight earlier, performed better in behavioral tests, and had smaller brain infarct size compared to the vehicle-treated group. No vascular wall damage and blood-brain barrier permeability changes were detected after the BMX-001 infusion. There was no drug interaction between BMX-001 and t-PA. Intracarotid BMX-001 infusion was safe, and it significantly improved stroke outcomes in rats. These findings indicate that BMX-001 is a candidate drug as an adjunct treatment for thrombectomy procedure to further improve the neurologic outcomes of thrombectomy patients. This study warrants further clinical investigation of BMX-001 as a new stroke therapy.

11.
mBio ; 14(5): e0181023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737622

RESUMEN

IMPORTANCE: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.


Asunto(s)
Cryptococcus neoformans , Micosis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
12.
medRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745503

RESUMEN

Background: Hundreds of millions of children in low- and middle-income countries are exposed to chronic stressors, such as poverty, poor sanitation and hygiene, and sub-optimal nutrition. These stressors can have physiological consequences for children and may ultimately have detrimental effects on child development. This study explores associations between biological measures of chronic stress in early life and developmental outcomes in a large cohort of young children living in rural Bangladesh. Methods: We assessed physiologic measures of stress in the first two years of life using measures of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol and glucocorticoid receptor gene methylation), the sympathetic-adrenal-medullary (SAM) system (salivary alpha-amylase, heart rate, and blood pressure), and oxidative status (F2-isoprostanes). We assessed child development in the first two years of life with the MacArthur-Bates Communicative Development Inventories (CDI), the WHO gross motor milestones, and the Extended Ages and Stages Questionnaire (EASQ). We compared development outcomes of children at the 75th and 25th percentiles of stress biomarker distributions while adjusting for potential confounders (hereafter referred to as contrasts) using generalized additive models, which are statistical models where the outcome is predicted by a potentially non-linear function of predictor variables. Results: We analyzed data from 684 children (49% female) at both 14 and 28 months of age; we included an additional 765 children at 28 months of age. We observed 135 primary contrasts of the differences in child development outcomes at the 75th and 25th percentiles of stress biomarkers, where we detected significant relationships in 5 out of 30 contrasts (17%) of HPA axis activity, 1 out of 30 contrasts (3%) of SAM activity, and 3 out of 75 contrasts (4%) of oxidative status. These findings revealed that measures of HPA axis activity were associated with poor development outcomes. We did not find consistent evidence that markers of SAM system activity or oxidative status were associated with developmental status. Conclusions: Our observations reveal associations between the physiological evidence of stress in the HPA axis with developmental status in early childhood. These findings add to the existing evidence exploring the developmental consequences of early life stress.

13.
J Biol Inorg Chem ; 28(7): 679-687, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37656248

RESUMEN

The interactions of drugs with iron are of interest in relation to the potential effects of iron-rich foods and iron supplements on sorption and bioavailability. Doxycycline (DOX), a member of the tetracycline class of broad-spectrum antibiotics, is frequently administered by oral route. In the digestive tract, DOX can be exposed to iron at different pH values (stomach pH 1.5-4, duodenum pH 5-6, distal jejunum and ileum pH 7-8). In relation to this, we analyzed the impact of pH on Fe3+-DOX complex formation. The optimal conditions for Fe3+-DOX complex formation are pH = 4 and [Fe3+]/[DOX] = 6 molar ratio. HESI-MS showed that Fe3+-DOX complex has 1:1 stoichiometry. Raman spectra of Fe3+-DOX complex indicate the presence of two Fe3+-binding sites in DOX structure: tricarbonylamide group of ring A and phenolic-diketone oxygens of BCD rings. The Fe3+-DOX complex formed at pH = 4 is less susceptible to oxidation than DOX at this pH. The increase of pH induces the decomposition of Fe3+-DOX complex without oxidative degradation of DOX. The pH dependence of Fe3+-DOX complex formation may promote unwanted effects of DOX, impeding the absorption that mainly takes place in duodenum. This could further result in higher concentrations in the digestive tract and to pronounced impact on gut microbiota.


Asunto(s)
Antibacterianos , Doxiciclina , Disponibilidad Biológica , Hierro , Concentración de Iones de Hidrógeno
14.
Cancers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37568630

RESUMEN

Manganese(III) porphyrin MnTnBuOE-2-PyP5+ (MnBuOE, BMX-001) is a third-generation redox-active cationic substituted pyridylporphyrin-based drug with a good safety/toxicity profile that has been studied in several types of cancer. It is currently in four phase I/II clinical trials on patients suffering from glioma, head and neck cancer, anal squamous cell carcinoma and multiple brain metastases. There is yet an insufficient understanding of the impact of MnBuOE on lung cancer. Therefore, this study aims to fill this gap by demonstrating the effects of MnBuOE on non-small cell lung cancer (NSCLC) A549 and H1975 cell lines. The cytotoxicity of MnBuOE alone or combined with cisplatin was evaluated by crystal violet (CV) and/or 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-Tetrazolium (MTS) reduction assays. Intracellular ROS levels were assessed using two fluorescent probes. Furthermore, the impact of MnBuOE alone or in combination with cisplatin on collective cell migration, individual chemotactic migration and chemoinvasion was assessed using the wound-healing and transwell assays. The expression of genes related to migration and invasion was assessed through RT-qPCR. While MnBuOE alone decreased H1975 cell viability at high concentrations, when combined with cisplatin it markedly reduced the viability of the more invasive H1975 cell line but not of A549 cell line. However, MnBuOE alone significantly decreased the migration of both cell lines. The anti-migratory effect was more pronounced when MnBuOE was combined with cisplatin. Finally, MnBuOE alone or combined with cisplatin significantly reduced cell invasion. MnBuOE alone or combined with cisplatin downregulated MMP2, MMP9, VIM, EGFR and VEGFA and upregulated CDH1 in both cell lines. Overall, our data demonstrate the anti-metastatic potential of MnBuOE for the treatment of NSCLC.

15.
Sci Transl Med ; 15(708): eadf5668, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556556

RESUMEN

The UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase LpxC is an essential enzyme in the biosynthesis of lipid A, the outer membrane anchor of lipopolysaccharide and lipooligosaccharide in Gram-negative bacteria. The development of LpxC-targeting antibiotics toward clinical therapeutics has been hindered by the limited antibiotic profile of reported non-hydroxamate inhibitors and unexpected cardiovascular toxicity observed in certain hydroxamate and non-hydroxamate-based inhibitors. Here, we report the preclinical characterization of a slow, tight-binding LpxC inhibitor, LPC-233, with low picomolar affinity. The compound is a rapid bactericidal antibiotic, unaffected by established resistance mechanisms to commercial antibiotics, and displays outstanding activity against a wide range of Gram-negative clinical isolates in vitro. It is orally bioavailable and efficiently eliminates infections caused by susceptible and multidrug-resistant Gram-negative bacterial pathogens in murine soft tissue, sepsis, and urinary tract infection models. It displays exceptional in vitro and in vivo safety profiles, with no detectable adverse cardiovascular toxicity in dogs at 100 milligrams per kilogram. These results establish the feasibility of developing oral LpxC-targeting antibiotics for clinical applications.


Asunto(s)
Bacterias Gramnegativas , Lípido A , Animales , Ratones , Perros , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/química
16.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333270

RESUMEN

Fungal infections are of mounting global concern, and the current limited treatment arsenal poses challenges when treating such infections. In particular, infections by Cryptococcus neoformans are associated with high mortality, emphasizing the need for novel therapeutic options. Calcineurin is a protein phosphatase that mediates fungal stress responses, and calcineurin inhibition by the natural product FK506 blocks C. neoformans growth at 37°C. Calcineurin is also required for pathogenesis. However, because calcineurin is conserved in humans, and inhibition with FK506 results in immunosuppression, the use of FK506 as an anti-infective agent is precluded. We previously elucidated the structures of multiple fungal calcineurin-FK506-FKBP12 complexes and implicated the C-22 position on FK506 as a key point for differential modification of ligand inhibition of the mammalian versus fungal target proteins. Through in vitro antifungal and immunosuppressive testing of FK520 (a natural analog of FK506) derivatives, we identified JH-FK-08 as a lead candidate for further antifungal development. JH-FK-08 exhibited significantly reduced immunosuppressive activity and both reduced fungal burden and prolonged survival of infected animals. JH-FK-08 exhibited additive activity in combination with fluconazole in vivo . These findings further advance calcineurin inhibition as an antifungal therapeutic approach. Importance: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited and development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally-active FDA approved therapy. This research advances the development of much needed newer antifungal treatment options with novel mechanisms of action.

17.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131619

RESUMEN

Stimulating the innate immune system has been explored as a therapeutic option for the treatment of gliomas. Inactivating mutations in ATRX , defining molecular alterations in IDH -mutant astrocytomas, have been implicated in dysfunctional immune signaling. However, little is known about the interplay between ATRX loss and IDH mutation on innate immunity. To explore this, we generated ATRX knockout glioma models in the presence and absence of the IDH1 R 132 H mutation. ATRX-deficient glioma cells were sensitive to dsRNA-based innate immune agonism and exhibited impaired lethality and increased T-cell infiltration in vivo . However, the presence of IDH1 R 132 H dampened baseline expression of key innate immune genes and cytokines in a manner restored by genetic and pharmacological IDH1 R132H inhibition. IDH1 R132H co-expression did not interfere with the ATRX KO-mediated sensitivity to dsRNA. Thus, ATRX loss primes cells for recognition of dsRNA, while IDH1 R132H reversibly masks this priming. This work reveals innate immunity as a therapeutic vulnerability of astrocytoma.

18.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047131

RESUMEN

Myocardial ischemia-reperfusion injury (I/R) causes damage to cardiomyocytes through oxidative stress and apoptosis. We investigated the cardioprotective effects of MnTnBuOE-2-PyP5+ (BMX-001), a superoxide dismutase mimic, in an in vitro model of I/R injury in H9c2 cardiomyocytes. We found that BMX-001 protected against hypoxia/reoxygenation (H/R)-induced oxidative stress, as evident by a significant reduction in intracellular and mitochondrial superoxide levels. BMX-001 pre-treatment also reduced H/R-induced cardiomyocyte apoptosis, as marked by a reduction in TUNEL-positive cells. We further demonstrated that BMX-001 pre-treatment significantly improved mitochondrial function, particularly O2 consumption, in mouse adult cardiomyocytes subjected to H/R. BMX-001 treatment also attenuated cardiolipin peroxidation, 4-hydroxynonenal (4-HNE) level, and 4-HNE adducted proteins following H/R injury. Finally, the pre-treatment with BMX-001 improved cell viability and lactate dehydrogenase (LDH) activity in H9c2 cells following H/R injury. Our findings suggest that BMX-001 has therapeutic potential as a cardioprotective agent against oxidative stress-induced H/R damage in H9c2 cardiomyocytes.


Asunto(s)
Metaloporfirinas , Imitación Molecular , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Estrés Oxidativo , Superóxido Dismutasa , Superóxido Dismutasa/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Lactato Deshidrogenasas/metabolismo , Línea Celular , Animales , Ratas , Cardiolipinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Metabolismo Energético/efectos de los fármacos , Apoptosis/efectos de los fármacos
19.
J Inorg Biochem ; 243: 112181, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931150

RESUMEN

Hydralazine (HL), a frequently prescribed oral antihypertensive drug, shows redox interactions with transition metals such as copper that are not fully understood. Copper may be present at high concentrations in the digestive tract and can affect oral drugs. An important parameter for such interactions is pH, which changes from acidic in the gastric juice to neutral pH in intestines. In this study, we examined interactions of HL with Cu2+ ions in conditions that mimic pH shift in the digestive tract using UV-Vis, Raman and EPR spectroscopy, cyclic voltammetry and oximetry. In the acidic solution, Cu2+ formed a stable mononuclear complex with two bidentate coordinated HL molecules. On the other hand, at neutral pH, Cu2+ initiated oxidation and degradation of HL. The degradation was more rapid in the HL-Cu2+ system that was initially prepared at acidic pH and then shifted to neutral pH. The formation of the complex at acidic pH increases the availability of Cu2+ for redox reactions after the shift to neutral pH at which Cu2+ is poorly soluble. These results imply that the change of pH along the digestive tract may promote HL degradation by allowing the formation of the complex at gastric pH which makes Cu2+ available for subsequent oxidation of HL at neutral pH.


Asunto(s)
Cobre , Hidralazina , Cobre/química , Oxidación-Reducción , Concentración de Iones de Hidrógeno , Estrés Oxidativo
20.
Biomaterials ; 294: 121985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36630826

RESUMEN

Many biologics have a short plasma half-life, and their conjugation to polyethylene glycol (PEG) is commonly used to solve this problem. However, the improvement in the plasma half-life of PEGylated drugs' is at an asymptote because the development of branched PEG has only had a modest impact on pharmacokinetics and pharmacodynamics. Here, we developed an injectable PEG-like conjugate that forms a subcutaneous depot for the sustained delivery of biologics. The PEG-like conjugate consists of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) conjugated to exendin, a peptide drug used in the clinic to treat type 2 diabetes. The depot-forming exendin-POEGMA conjugate showed greater efficacy than a PEG conjugate of exendin as well as Bydureon, a clinically approved sustained-release formulation of exendin. The injectable depot-forming exendin-POEGMA conjugate did not elicit an immune response against the polymer, so that it remained effective and safe for long-term management of type 2 diabetes upon chronic administration. In contrast, the PEG conjugate induced an anti-PEG immune response, leading to early clearance and loss of efficacy upon repeat dosing. The exendin-POEGMA depot also showed superior long-term efficacy compared to Bydureon. Collectively, these results suggest that an injectable POEGMA conjugate of biologic drugs that forms a drug depot under the skin, providing favorable pharmacokinetic properties and sustained efficacy while remaining non-immunogenic, offers significant advantages over other commonly used drug delivery technologies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polietilenglicoles/química , Péptidos/química , Antígenos , Preparaciones de Acción Retardada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...