Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 36(8): 1726-1744.e10, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38986617

RESUMEN

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.


Asunto(s)
Glutatión , Interleucina-22 , Interleucinas , Mitocondrias , Células Th17 , Animales , Interleucinas/metabolismo , Mitocondrias/metabolismo , Glutatión/metabolismo , Células Th17/metabolismo , Células Th17/inmunología , Ratones , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Citrobacter rodentium , Intestinos/patología , Intestinos/inmunología , Inflamación/metabolismo , Inflamación/patología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/patología , Ratones Noqueados , Serina-Treonina Quinasas TOR/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología
2.
J Immunol ; 213(1): 52-62, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767415

RESUMEN

The thymus is an important site for the establishment of an appropriate immune response through positive and negative selection of developing T cells. During selection, developing T cells interact with cortical and medullary thymic epithelial cells (TECs), termed cTECs and mTECs, respectively. Using a Foxn1Cre+/-SKIfl/fl mouse model, we found that TEC-specific deletion of SKI reduced the mTEC compartment in the thymus and that tissue-restricted Ag expression in mTECs was altered. This decrease in the medullary area led to a decrease in CD4 thymocyte cellularity; however, mature CD4 cellularity in the spleen remained normal. Interestingly, naive CD4 T cells purified from SKI-deleted mice showed a defect in proliferation in vitro after global TCR stimulation, and these mice were significantly protected from developing experimental autoimmune encephalomyelitis compared with the control mice. Overall, our findings suggest that SKI signaling in the thymus regulates mTEC differentiation and function as well as downstream peripheral T cell responses and provide evidence for targeting SKI in T cell-driven autoimmune diseases such as multiple sclerosis.


Asunto(s)
Diferenciación Celular , Encefalomielitis Autoinmune Experimental , Células Epiteliales , Timo , Animales , Ratones , Timo/inmunología , Timo/citología , Diferenciación Celular/inmunología , Células Epiteliales/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratones Noqueados , Proteínas de Unión al ADN/genética , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología
3.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489135

RESUMEN

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

4.
iScience ; 25(9): 104998, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36093048

RESUMEN

Foxp3+ regulatory T cells (Tregs) are critical mediators of peripheral tolerance and immune homeostasis and exert tissue-specific functions. In many nonlymphoid tissues, Tregs show enriched expression of the IL-33 receptor ST2. Through comprehensive profiling of murine ST2+ and ST2- Tregs, we found that Treg transcriptomes and phenotypes formed a hierarchical relationship across tissues. Only a small core signature distinguished ST2+ Tregs from ST2- Tregs across all tissues, and differences in transcriptional profiles were predominantly tissue-specific. We also identified unique, highly proliferative, circulating ST2+ Tregs with high migratory potential. In adoptive transfers, both ST2+ and ST2- Tregs seeded various host tissues and demonstrated plasticity in ST2 expression. Furthermore, Tregs from donor lungs were differentially recovered from host nonlymphoid tissues in an IL-33-dependent manner. In summary, our work identified tissue residency rather than ST2 expression as a primary driver of tissue Treg identity and highlights the unique, tissue-specific adaption of ST2+ Tregs.

5.
Sci Immunol ; 7(72): eabo5407, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749515

RESUMEN

Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.


Asunto(s)
Autoinmunidad , Linfocitos T Reguladores , Animales , Autoinmunidad/genética , Exones/genética , Factores de Transcripción Forkhead , Humanos , Ratones , Isoformas de Proteínas/metabolismo
6.
Immunity ; 50(5): 1289-1304.e6, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31079916

RESUMEN

Pathogenic lymphocytes initiate the development of chronic inflammatory diseases. The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) (encoded by Csf2) is a key communicator between pathogenic lymphocytes and tissue-invading inflammatory phagocytes. However, the molecular properties of GM-CSF-producing cells and the mode of Csf2 regulation in vivo remain unclear. To systematically study and manipulate GM-CSF+ cells and their progeny in vivo, we generated a fate-map and reporter of GM-CSF expression mouse strain (FROG). We mapped the phenotypic and functional profile of auto-aggressive T helper (Th) cells during neuroinflammation and identified the signature and pathogenic memory of a discrete encephalitogenic Th subset. These cells required interleukin-23 receptor (IL-23R) and IL-1R but not IL-6R signaling for their maintenance and pathogenicity. Specific ablation of this subset interrupted the inflammatory cascade, despite the unperturbed tissue accumulation of other Th subsets (e.g., Th1 and Th17), highlighting that GM-CSF expression not only marks pathogenic Th cells, but that this subset mediates immunopathology and tissue destruction.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/inmunología , Células TH1/inmunología , Células Th17/inmunología , Animales , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Inflamación/genética , Inflamación/patología , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR6/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/inmunología , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
7.
Sci Transl Med ; 10(469)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487251

RESUMEN

Allogeneic hematopoietic cell transplantation (allo-HCT) not only is an effective treatment for several hematologic malignancies but can also result in potentially life-threatening graft-versus-host disease (GvHD). GvHD is caused by T cells within the allograft attacking nonmalignant host tissues; however, these same T cells mediate the therapeutic graft-versus-leukemia (GvL) response. Thus, there is an urgent need to understand how to mechanistically uncouple GvL from GvHD. Using preclinical models of full and partial MHC-mismatched HCT, we here show that the granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by allogeneic T cells distinguishes between the two processes. GM-CSF drives GvHD pathology by licensing donor-derived phagocytes to produce inflammatory mediators such as interleukin-1ß and reactive oxygen species. In contrast, GM-CSF did not affect allogeneic T cells or their capacity to eliminate leukemic cells, retaining undiminished GvL responses. Last, tissue biopsies and peripheral blood mononuclear cells from patients with grade IV GvHD showed an elevation of GM-CSF-producing T cells, suggesting that GM-CSF neutralization has translational potential in allo-HCT.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Inmunidad/efectos de los fármacos , Leucemia/inmunología , Células Mieloides/metabolismo , Animales , Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad/metabolismo , Humanos , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Trasplante Homólogo
9.
Nat Med ; 24(3): 282-291, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431743

RESUMEN

Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD+ leukemia cells. This synergized with the allogeneic CD8+ T cell response, leading to long-term survival in six mouse models of FLT3-ITD+ AML. Sorafenib-related IL-15 production caused an increase in CD8+CD107a+IFN-γ+ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD+ AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8+ T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.


Asunto(s)
Factor de Transcripción Activador 4/genética , Factor 7 Regulador del Interferón/genética , Interleucina-15/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/genética , Animales , Linfocitos T CD8-positivos/inmunología , Reprogramación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Sorafenib/administración & dosificación , Sorafenib/efectos adversos , Secuencias Repetidas en Tándem/genética , Trasplante Homólogo/efectos adversos
10.
Immunity ; 46(2): 245-260, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228281

RESUMEN

Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment.


Asunto(s)
Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Fagocitos/inmunología , Animales , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Reacción en Cadena de la Polimerasa
11.
Nat Rev Immunol ; 17(1): 49-59, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27916979

RESUMEN

Cytokines provide cells with the ability to communicate with one another and orchestrate complex multicellular behaviour. There is an emerging understanding of the role that cytokines play in normal homeostatic tissue function and how dysregulation of these cytokine networks is associated with pathological conditions. The central nervous system (CNS), where few blood-borne immune cells circulate, seems to be particularly vulnerable to dysregulated cytokine networks. In degenerative diseases, such as proteopathies, CNS-resident cells are the predominant producers of pro-inflammatory cytokines. By contrast, in classical neuroinflammatory diseases, such as multiple sclerosis and encephalitides, pro-inflammatory cytokines are mainly produced by tissue-invading leukocytes. Whereas the effect of dysregulated cytokine networks in proteopathies is controversial, cytokines delivered to the CNS by invading immune cells are in general detrimental to the tissue. Here, we summarize recent observations on the impact of dysregulated cytokine networks in neuroinflammation.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Citocinas/inmunología , Inflamación/inmunología , Animales , Humanos
12.
Trends Immunol ; 36(10): 651-662, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26431942

RESUMEN

Multiple sclerosis (MS) is the prototypical inflammatory disease of the central nervous system (CNS). MS lesions harbor different immune cells, but the contribution of individual cell types to disease etiology and progression is not well understood. In experimental autoimmune encephalomyelitis (EAE), auto-reactive helper T (Th) cells instigate CNS inflammation by acting on myeloid cells via the production of granulocyte-macrophage colony-stimulating factor (GM-CSF). Recent reports have implicated myeloid cells in both the inflammatory process and as executers of tissue damage in the CNS. We review these findings here, and integrate them into a model wherein GM-CSF produced by Th cells coordinates monocyte recruitment to the CNS, and differentiation into pathogenic effectors. We discuss the implications of this model to current therapies for MS, and outline important areas of further inquiry.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Animales , Comunicación Celular , Diferenciación Celular , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Inflamación/genética , Inflamación/patología , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Células Mieloides/citología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neuroinmunomodulación , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
13.
Inflamm Bowel Dis ; 21(4): 854-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25742401

RESUMEN

BACKGROUND: The Gram-negative bacterium Helicobacter pylori is a constituent of the human gastric microbiota. Chronic infection with H. pylori causes gastritis and predisposes to gastric carcinoma but has also been inversely linked to various allergic and chronic inflammatory conditions. In particular, large meta-analyses have documented an inverse association between H. pylori infection and the risk of developing ulcerative colitis and Crohn's disease. METHODS: We investigated possible protective effects of experimental H. pylori infection and of regular treatment with H. pylori extract in 2 mouse models of colitis and in mouse models of type I diabetes and multiple sclerosis. The mechanism of protection was examined in mouse strains lacking specific innate immune recognition pathways and cytokines. RESULTS: We show here that experimental infection with H. pylori and administration of regular doses of H. pylori extract both alleviate the clinical and histopathological features of dextran sodium sulfate-induced chronic colitis and of T-cell transfer-induced colitis. High resolution endoscopy of the protected animals revealed the accumulation of large amounts of colonic mucus upon H. pylori exposure, which could be attributed to transcriptional activation of the mucin 2 gene. The protection against dextran sodium sulfate-induced colitis was dependent on the NLRP3 inflammasome and interleukin-18 signaling. Other autoimmune diseases, i.e., experimental autoimmune encephalomyelitis and type I diabetes, were not controlled by H. pylori. CONCLUSIONS: In summary, we propose here that the immunomodulatory activity of an ancient constituent of the gut microbiota, H. pylori, may be exploited for the prevention and/or treatment of inflammatory bowel diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Colitis/prevención & control , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Interleucina-18/metabolismo , Animales , Colitis/inducido químicamente , Colitis/microbiología , Sulfato de Dextran/toxicidad , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/prevención & control , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/microbiología , Encefalomielitis Autoinmune Experimental/prevención & control , Infecciones por Helicobacter/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mucina 2/genética , Mucina 2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Linfocitos T/inmunología , Activación Transcripcional , Regulación hacia Arriba
14.
Eur J Immunol ; 43(11): 2810-3, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24142468

RESUMEN

The search for the encephalitogenic factor driving pathogenic T cells in autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), and psoriasis has proven to be a long and difficult mission, which is not yet completed. In this issue of the European Journal of Immunology, the importance of the transcription factor T-bet, previously shown to be essential for the induction of autoimmune disease in mice, is challenged. Two independent groups, O'Connor et al. [Eur. J. Immunol. 2013. 43:2818-2823] report] and Grifka-Walk et al. [Eur. J. Immunol. 2013. 43:2824-2831], report that T-bet is not mandatory for T cells to cause experimental autoimmune encephalomyelitis (EAE), which serves as a paradigmatic T-cell-mediated autoimmune disease. Both groups found that T-bet KO mice were fully susceptible to develop EAE, both after immunization with self-antigen and after adoptive transfer of IL-23-polarized autoaggressive T cells. T-bet deficiency mediated the loss of IFN-γ expression but retained or even enhanced GM-CSF and IL-17 production by central nervous system (CNS)-infiltrating T cells. These findings indicate that we have lost the last transcriptional regulator previously held to be required for the generation of autoimmune pathogenic T cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Proteínas de Dominio T Box/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Células Th17/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...