Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 136(1): 33-42, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994415

RESUMEN

Exercise in hypoxia increases immune responses compared with normoxic exercise, and while Toll-like receptor 4 (TLR4) is implicated in these responses, its regulation remains undefined. The purpose of this study was to 1) investigate TLR4 regulation during workload-matched endurance exercise in normoxic and hypoxic conditions in vivo and 2) determine the independent effects of hypoxia and muscle contractions on TLR4 expression in vitro. Eight recreationally active men cycled for 1 h at 65% of their V̇o2max in normoxia (630 mmHg) and in hypobaric hypoxia (440 mmHg). Exercise in normoxia decreased TLR4 expressed on peripheral blood mononuclear cells (PBMCs), had no effect on the expression of inhibitor of κBα (IκBα), and increased the concentration of soluble TLR4 (sTLR4) in circulation. In contrast, exercise in hypoxia decreased the expression of TLR4 and IκBα in PBMCs, and sTLR4 in circulation. Markers of physiological stress were higher during exercise in hypoxia, correlating with markers of intestinal barrier damage, circulating lipopolysaccharides (LPS), and a concurrent decrease in circulating sTLR4, suggesting heightened TLR4 activation, internalization, and degradation in response to escalating physiological strain. In vitro, both hypoxia and myotube contractions independently, and in combination, reduced TLR4 expressed on C2C12 myotubes, and these effects were dependent on hypoxia-inducible factor 1 (HIF-1). In summary, the regulation of TLR4 varies depending on the physiological stress during exercise. To our knowledge, our study provides the first evidence of exercise-induced effects on sTLR4 in vivo and highlights the essential role of HIF-1 in the reduction of TLR4 during contraction and hypoxia in vitro.NEW & NOTEWORTHY We provide the first evidence of exercise affecting soluble Toll-like receptor 4 (sTLR4), a TLR4 ligand decoy receptor. We found that the degree of exercise-induced physiological stress influences TLR4 regulation on peripheral blood mononuclear cells (PBMCs). Moderate-intensity exercise reduces PBMC TLR4 and increases circulating sTLR4. Conversely, workload-matched exercise in hypoxia induces greater physiological stress, intestinal barrier damage, circulating lipopolysaccharides, and reduces both TLR4 and sTLR4, suggesting heightened TLR4 activation, internalization, and degradation under increased strain.


Asunto(s)
Leucocitos Mononucleares , Receptor Toll-Like 4 , Masculino , Humanos , Receptor Toll-Like 4/metabolismo , Leucocitos Mononucleares/metabolismo , Inhibidor NF-kappaB alfa , Carga de Trabajo , Hipoxia , Lipopolisacáridos/farmacología
2.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R735-R749, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37842742

RESUMEN

Muscle mass is balanced between hypertrophy and atrophy by cellular processes, including activation of the protein kinase B-mechanistic target of rapamycin (Akt-mTOR) signaling cascade. Stressors apart from exercise and nutrition, such as heat stress, can stimulate the heat shock protein A (HSPA) and C (HSPC) families alongside hypertrophic signaling factors and muscle growth. The effects of heat stress on HSP expression and Akt-mTOR activation in human skeletal muscle and their magnitude of activation compared with known hypertrophic stimuli are unclear. Here, we show a single session of whole body heat stress following resistance exercise increases the expression of HSPA and activation of the Akt-mTOR cascade in skeletal muscle compared with resistance exercise in a healthy, resistance-trained population. Heat stress alone may also exert similar effects, though the responses are notably variable and require further investigation. In addition, acute heat stress in C2C12 muscle cells enhanced myotube growth and myogenic fusion, albeit to a lesser degree than growth factor-mediated hypertrophy. Though the mechanisms by which heat stress stimulates hypertrophy-related signaling and the potential mechanistic role of HSPs remain unclear, these findings provide additional evidence implicating heat stress as a novel growth stimulus when combined with resistance exercise in human skeletal muscle and alone in isolated murine muscle cells. We believe these findings will help drive further applied and mechanistic investigation into how heat stress influences muscular hypertrophy and atrophy.NEW & NOTEWORTHY We show that acute resistance exercise followed by whole body heat stress increases the expression of HSPA and increases activation of the Akt-mTOR cascade in a physically active and resistance-trained population.


Asunto(s)
Trastornos de Estrés por Calor , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Respuesta al Choque Térmico , Trastornos de Estrés por Calor/metabolismo , Hipertrofia/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Atrofia/metabolismo , Atrofia/patología
3.
Eur J Sport Sci ; 23(10): 2002-2010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37051668

RESUMEN

Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 µg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1ß (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.


Asunto(s)
Mal de Altura , Esfuerzo Físico , Humanos , Hipoxia , Mal de Altura/complicaciones , Mal de Altura/diagnóstico , Mal de Altura/metabolismo , Altitud , Inflamación
4.
Med Sci Sports Exerc ; 55(1): 141-150, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069803

RESUMEN

PURPOSE: The purpose of this study was to evaluate the effects of acute ibuprofen consumption (2 × 600-mg doses) on markers of enterocyte injury, intestinal barrier dysfunction, inflammation, and symptoms of gastrointestinal (GI) distress at rest and after exercise in hypobaric hypoxia. METHODS: Using a randomized double-blind placebo-controlled crossover design, nine men (age, 28 ± 3 yr; weight, 75.4 ± 10.5 kg; height, 175 ± 7 cm; body fat, 12.9% ± 5%; V̇O 2 peak at 440 torr, 3.11 ± 0.65 L·min -1 ) completed a total of three visits including baseline testing and two experimental trials (placebo and ibuprofen) in a hypobaric chamber simulating an altitude of 4300 m. Preexercise and postexercise blood samples were assayed for intestinal fatty acid binding protein (I-FABP), ileal bile acid binding protein, soluble cluster of differentiation 14, lipopolysaccharide binding protein, monocyte chemoattractant protein-1, tumor necrosis factor α (TNF-α), interleukin-1ß, and interleukin-10. Intestinal permeability was assessed using a dual sugar absorption test (urine lactulose-to-rhamnose ratio). RESULTS: Resting I-FABP (906 ± 395 vs 1168 ± 581 pg·mL -1 ; P = 0.008) and soluble cluster of differentiation 14 (1512 ± 297 vs 1642 ± 313 ng·mL -1 ; P = 0.014) were elevated in the ibuprofen trial. Likewise, the urine lactulose-to-rhamnose ratio (0.217 vs 0.295; P = 0.047) and the preexercise to postexercise change in I-FABP (277 ± 308 vs 498 ± 479 pg·mL -1 ; P = 0.021) were greater in the ibuprofen trial. Participants also reported greater upper GI symptoms in the ibuprofen trial ( P = 0.031). However, monocyte chemoattractant protein-1 ( P = 0.007) and TNF-α ( P = 0.047) were lower throughout the ibuprofen trial compared with placebo (main effect of condition). CONCLUSIONS: These data demonstrate that acute ibuprofen ingestion aggravates markers of enterocyte injury and intestinal barrier dysfunction at rest and after exercise in hypoxia. However, ibuprofen seems to suppress circulating markers of inflammation.


Asunto(s)
Ejercicio Físico , Enfermedades Gastrointestinales , Ibuprofeno , Descanso , Adulto , Humanos , Masculino , Quimiocina CCL2 , Hipoxia , Ibuprofeno/farmacología , Inflamación , Lactulosa/orina , Ramnosa/orina , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...