Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D1082-D1088, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953330

RESUMEN

The UCSC Genome Browser (https://genome.ucsc.edu) is a web-based genomic visualization and analysis tool that serves data to over 7,000 distinct users per day worldwide. It provides annotation data on thousands of genome assemblies, ranging from human to SARS-CoV2. This year, we have introduced new data from the Human Pangenome Reference Consortium and on viral genomes including SARS-CoV2. We have added 1,200 new genomes to our GenArk genome system, increasing the overall diversity of our genomic representation. We have added support for nine new user-contributed track hubs to our public hub system. Additionally, we have released 29 new tracks on the human genome and 11 new tracks on the mouse genome. Collectively, these new features expand both the breadth and depth of the genomic knowledge that we share publicly with users worldwide.


Asunto(s)
Bases de Datos Genéticas , Genómica , ARN Viral , Animales , Humanos , Ratones , Genoma Humano , Genoma Viral , Internet , Anotación de Secuencia Molecular , Programas Informáticos
2.
Genome Biol ; 24(1): 217, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784172

RESUMEN

Interactive graphical genome browsers are essential tools in genomics, but they do not contain all the recent genome assemblies. We create Genome Archive (GenArk) collection of UCSC Genome Browsers from NCBI assemblies. Built on our established track hub system, this enables fast visualization of annotations. Assemblies come with gene models, repeat masks, BLAT, and in silico PCR. Users can add annotations via track hubs and custom tracks. We can bulk-import third-party resources, demonstrated with TOGA and Ensembl gene models for hundreds of assemblies.Three thousand two hundred sixty-nine GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be searched for on the Genome Browser gateway page.


Asunto(s)
Genoma , Programas Informáticos , Genómica , Archivos , Técnicas de Amplificación de Ácido Nucleico , Bases de Datos Genéticas , Internet
3.
Res Sq ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066427

RESUMEN

Interactive graphical genome browsers are essential tools for biologists working with DNA sequences. Although tens of thousands of new genome assemblies have become available over the last decade, accessibility is limited by the work involved in manually creating browsers and curating annotations. The results can push the limits of data storage infrastructure. To facilitate managing this increasing number of genome assemblies, we created the Genome Archive (GenArk) collection of UCSC Genome Browsers from assemblies hosted at NCBI(1). Built on our established assembly hub system, this collection enables fast, on-demand visualization of chromosome regions without requiring a database server. Available annotations include gene models, some mapped through whole-genome alignments, repeat masks, GC content, and others. We also modified our popular BLAT(2) aligner and in-silico PCR to support a large number of genomes using limited RAM. Users can upload additional annotations themselves via track hubs(3) and custom tracks. We can import more annotations in bulk from third-party resources, demonstrated here with TOGA(4) gene models. 2,430 GenArk assemblies are listed at https://hgdownload.soe.ucsc.edu/hubs/ and can be found by searching on the main UCSC gateway page. We will continue to add human high-quality assemblies and for other organisms, we are looking forward to receiving requests from the research community for ever more browsers and whole-genome alignments via http://genome.ucsc.edu/assemblyRequest.html.

4.
Nucleic Acids Res ; 51(D1): D1188-D1195, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420891

RESUMEN

The UCSC Genome Browser (https://genome.ucsc.edu) is an omics data consolidator, graphical viewer, and general bioinformatics resource that continues to serve the community as it enters its 23rd year. This year has seen an emphasis in clinical data, with new tracks and an expanded Recommended Track Sets feature on hg38 as well as the addition of a single cell track group. SARS-CoV-2 continues to remain a focus, with regular annotation updates to the browser and continued curation of our phylogenetic sequence placing tool, hgPhyloPlace, whose tree has now reached over 12M sequences. Our GenArk resource has also grown, offering over 2500 hubs and a system for users to request any absent assemblies. We have expanded our bigBarChart display type and created new ways to visualize data via bigRmsk and dynseq display. Displaying custom annotations is now easier due to our chromAlias system which eliminates the requirement for renaming sequence names to the UCSC standard. Users involved in data generation may also be interested in our new tools and trackDb settings which facilitate the creation and display of their custom annotations.


Asunto(s)
Bases de Datos Genéticas , Genómica , Humanos , COVID-19/epidemiología , COVID-19/genética , Genómica/métodos , Internet , Filogenia , SARS-CoV-2/genética , Programas Informáticos , Navegador Web
5.
Nucleic Acids Res ; 50(D1): D1115-D1122, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718705

RESUMEN

The UCSC Genome Browser, https://genome.ucsc.edu, is a graphical viewer for exploring genome annotations. The website provides integrated tools for visualizing, comparing, analyzing, and sharing both publicly available and user-generated genomic datasets. Data highlights this year include a collection of easily accessible public hub assemblies on new organisms, now featuring BLAT alignment and PCR capabilities, and new and updated clinical tracks (gnomAD, DECIPHER, CADD, REVEL). We introduced a new Track Sets feature and enhanced variant displays to aid in the interpretation of clinical data. We also added a tool to rapidly place new SARS-CoV-2 genomes in a global phylogenetic tree enabling researchers to view the context of emerging mutations in our SARS-CoV-2 Genome Browser. Other new software focuses on usability features, including more informative mouseover displays and new fonts.


Asunto(s)
Bases de Datos Genéticas , Navegador Web , Animales , Genoma Humano , Humanos , Filogenia , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Interfaz Usuario-Computador , Secuenciación del Exoma
6.
Cell Stem Cell ; 28(12): 2153-2166.e6, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34536354

RESUMEN

Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia. We developed a "report card" of gene expression signatures across these distinct models to facilitate characterization of their responses across experimental models, perturbations, and disease conditions. Xenotransplantation of human microglia into cerebral organoids allowed us to characterize key transcriptional programs of developing microglia in vitro and reveal that microglia induce transcriptional changes in neural stem cells and decrease interferon signaling response genes. Microglia additionally accelerate the emergence of synchronized oscillatory network activity in brain organoids by modulating synaptic density.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Encéfalo , Diferenciación Celular , Humanos , Microglía , Modelos Teóricos , Organoides
7.
Bioinformatics ; 37(23): 4578-4580, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34244710

RESUMEN

SUMMARY: As the use of single-cell technologies has grown, so has the need for tools to explore these large, complicated datasets. The UCSC Cell Browser is a tool that allows scientists to visualize gene expression and metadata annotation distribution throughout a single-cell dataset or multiple datasets. AVAILABILITY AND IMPLEMENTATION: We provide the UCSC Cell Browser as a free website where scientists can explore a growing collection of single-cell datasets and a freely available python package for scientists to create stable, self-contained visualizations for their own single-cell datasets. Learn more at https://cells.ucsc.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Programas Informáticos , Bases de Datos Genéticas , Metadatos
8.
Dev Cell ; 56(3): 292-309.e9, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33321106

RESUMEN

Haploinsufficiency of transcriptional regulators causes human congenital heart disease (CHD); however, the underlying CHD gene regulatory network (GRN) imbalances are unknown. Here, we define transcriptional consequences of reduced dosage of the CHD transcription factor, TBX5, in individual cells during cardiomyocyte differentiation from human induced pluripotent stem cells (iPSCs). We discovered highly sensitive dysregulation of TBX5-dependent pathways-including lineage decisions and genes associated with heart development, cardiomyocyte function, and CHD genetics-in discrete subpopulations of cardiomyocytes. Spatial transcriptomic mapping revealed chamber-restricted expression for many TBX5-sensitive transcripts. GRN analysis indicated that cardiac network stability, including vulnerable CHD-linked nodes, is sensitive to TBX5 dosage. A GRN-predicted genetic interaction between Tbx5 and Mef2c, manifesting as ventricular septation defects, was validated in mice. These results demonstrate exquisite and diverse sensitivity to TBX5 dosage in heterogeneous subsets of iPSC-derived cardiomyocytes and predicts candidate GRNs for human CHDs, with implications for quantitative transcriptional regulation in disease.


Asunto(s)
Redes Reguladoras de Genes , Haploinsuficiencia/genética , Cardiopatías Congénitas/genética , Modelos Biológicos , Proteínas de Dominio T Box/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Dosificación de Gen , Ventrículos Cardíacos/patología , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones , Mutación/genética , Miocitos Cardíacos/metabolismo , Transcripción Genética
9.
Nucleic Acids Res ; 49(D1): D1046-D1057, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33221922

RESUMEN

For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community. As the field of genomics grows and more data become available, new modes of display are required to accommodate new technologies. New features released this past year include a Hi-C heatmap display, a phased family trio display for VCF files, and various track visualization improvements. Striving to keep data up-to-date, new updates to gene annotations include GENCODE Genes, NCBI RefSeq Genes, and Ensembl Genes. New data tracks added for human and mouse genomes include the ENCODE registry of candidate cis-regulatory elements, promoters from the Eukaryotic Promoter Database, and NCBI RefSeq Select and Matched Annotation from NCBI and EMBL-EBI (MANE). Within weeks of learning about the outbreak of coronavirus, UCSC released a genome browser, with detailed annotation tracks, for the SARS-CoV-2 RNA reference assembly.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma/genética , Genómica/métodos , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Curaduría de Datos/métodos , Epidemias , Humanos , Internet , Ratones , Anotación de Secuencia Molecular/métodos , SARS-CoV-2/fisiología , Programas Informáticos
10.
Nucleic Acids Res ; 48(D1): D756-D761, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691824

RESUMEN

The University of California Santa Cruz Genome Browser website (https://genome.ucsc.edu) enters its 20th year of providing high-quality genomics data visualization and genome annotations to the research community. In the past year, we have added a new option to our web BLAT tool that allows search against all genomes, a single-cell expression viewer (https://cells.ucsc.edu), a 'lollipop' plot display mode for high-density variation data, a RESTful API for data extraction and a custom-track backup feature. New datasets include Tabula Muris single-cell expression data, GeneHancer regulatory annotations, The Cancer Genome Atlas Pan-Cancer variants, Genome Reference Consortium Patch sequences, new ENCODE transcription factor binding site peaks and clusters, the Database of Genomic Variants Gold Standard Variants, Genomenon Mastermind variants and three new multi-species alignment tracks.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Programas Informáticos , Genómica , Humanos , Internet
11.
Nucleic Acids Res ; 47(D1): D853-D858, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407534

RESUMEN

The UCSC Genome Browser (https://genome.ucsc.edu) is a graphical viewer for exploring genome annotations. For almost two decades, the Browser has provided visualization tools for genetics and molecular biology and continues to add new data and features. This year, we added a new tool that lets users interactively arrange existing graphing tracks into new groups. Other software additions include new formats for chromosome interactions, a ChIP-Seq peak display for track hubs and improved support for HGVS. On the annotation side, we have added gnomAD, TCGA expression, RefSeq Functional elements, GTEx eQTLs, CRISPR Guides, SNPpedia and created a 30-way primate alignment on the human genome. Nine assemblies now have RefSeq-mapped gene models.


Asunto(s)
Bases de Datos Genéticas , Genoma/genética , Genómica , Programas Informáticos , Animales , Mapeo Cromosómico , Genoma Humano/genética , Humanos , Anotación de Secuencia Molecular , Navegador Web
12.
Nucleic Acids Res ; 46(D1): D762-D769, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29106570

RESUMEN

The UCSC Genome Browser (https://genome.ucsc.edu) provides a web interface for exploring annotated genome assemblies. The assemblies and annotation tracks are updated on an ongoing basis-12 assemblies and more than 28 tracks were added in the past year. Two recent additions are a display of CRISPR/Cas9 guide sequences and an interactive navigator for gene interactions. Other upgrades from the past year include a command-line version of the Variant Annotation Integrator, support for Human Genome Variation Society variant nomenclature input and output, and a revised highlighting tool that now supports multiple simultaneous regions and colors.


Asunto(s)
Bases de Datos Genéticas , Genoma , Navegador Web , Sistemas CRISPR-Cas , Presentación de Datos , Redes Reguladoras de Genes , Genoma Humano , Humanos , Anotación de Secuencia Molecular , Terminología como Asunto , Interfaz Usuario-Computador
13.
Nucleic Acids Res ; 45(D1): D626-D634, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899642

RESUMEN

Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.


Asunto(s)
Bases de Datos Genéticas , Motor de Búsqueda , Navegador Web , Animales , Biología Computacional/métodos , Genoma , Genómica/métodos , Humanos , Anotación de Secuencia Molecular , Programas Informáticos
14.
Bioinformatics ; 32(9): 1430-2, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26740527

RESUMEN

UNLABELLED: Two new tools on the UCSC Genome Browser web site provide improved ways of combining information from multiple datasets, optionally including the user's own custom track data and/or data from track hubs. The Data Integrator combines columns from multiple data tracks, showing all items from the first track along with overlapping items from the other tracks. The Variant Annotation Integrator is tailored to adding functional annotations to variant calls; it offers a more restricted set of underlying data tracks but adds predictions of each variant's consequences for any overlapping or nearby gene transcript. When available, it optionally adds additional annotations including effect prediction scores from dbNSFP for missense mutations, ENCODE regulatory summary tracks and conservation scores. AVAILABILITY AND IMPLEMENTATION: The web tools are freely available at http://genome.ucsc.edu/ and the underlying database is available for download at http://hgdownload.cse.ucsc.edu/ The software (written in C and Javascript) is available from https://genome-store.ucsc.edu/ and is freely available for academic and non-profit usage; commercial users must obtain a license. CONTACT: angie@soe.ucsc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Programas Informáticos , Animales , Bases de Datos Genéticas , Genómica , Humanos , Internet
15.
Nucleic Acids Res ; 44(D1): D717-25, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26590259

RESUMEN

For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Enfermedad/genética , Genes , Genoma , Humanos , Ratones , Anotación de Secuencia Molecular , Programas Informáticos
16.
Nucleic Acids Res ; 43(Database issue): D670-81, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25428374

RESUMEN

Launched in 2001 to showcase the draft human genome assembly, the UCSC Genome Browser database (http://genome.ucsc.edu) and associated tools continue to grow, providing a comprehensive resource of genome assemblies and annotations to scientists and students worldwide. Highlights of the past year include the release of a browser for the first new human genome reference assembly in 4 years in December 2013 (GRCh38, UCSC hg38), a watershed comparative genomics annotation (100-species multiple alignment and conservation) and a novel distribution mechanism for the browser (GBiB: Genome Browser in a Box). We created browsers for new species (Chinese hamster, elephant shark, minke whale), 'mined the web' for DNA sequences and expanded the browser display with stacked color graphs and region highlighting. As our user community increasingly adopts the UCSC track hub and assembly hub representations for sharing large-scale genomic annotation data sets and genome sequencing projects, our menu of public data hubs has tripled.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genómica , Animales , Cricetinae , Perros , Ebolavirus/genética , Expresión Génica , Genoma , Internet , Ratones , Anotación de Secuencia Molecular , Fenotipo , Ratas , Programas Informáticos
17.
Bioinformatics ; 31(5): 764-6, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25348212

RESUMEN

UNLABELLED: Genome Browser in a Box (GBiB) is a small virtual machine version of the popular University of California Santa Cruz (UCSC) Genome Browser that can be run on a researcher's own computer. Once GBiB is installed, a standard web browser is used to access the virtual server and add personal data files from the local hard disk. Annotation data are loaded on demand through the Internet from UCSC or can be downloaded to the local computer for faster access. AVAILABILITY AND IMPLEMENTATION: Software downloads and installation instructions are freely available for non-commercial use at https://genome-store.ucsc.edu/. GBiB requires the installation of open-source software VirtualBox, available for all major operating systems, and the UCSC Genome Browser, which is open source and free for non-commercial use. Commercial use of GBiB and the Genome Browser requires a license (http://genome.ucsc.edu/license/).


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Genómica/métodos , Almacenamiento y Recuperación de la Información , Análisis de Secuencia de ADN/métodos , Biología Computacional , Humanos , Internet , Programas Informáticos , Universidades , Interfaz Usuario-Computador
18.
PLoS Curr ; 62014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25685613

RESUMEN

BACKGROUND: With the Ebola epidemic raging out of control in West Africa, there has been a flurry of research into the Ebola virus, resulting in the generation of much genomic data. METHODS: In response to the clear need for tools that integrate multiple strands of research around molecular sequences, we have created the University of California Santa Cruz (UCSC) Ebola Genome Browser, an adaptation of our popular UCSC Genome Browser web tool, which can be used to view the Ebola virus genome sequence from GenBank and nearly 30 annotation tracks generated by mapping external data to the reference sequence. Significant annotations include a multiple alignment comprising 102 Ebola genomes from the current outbreak, 56 from previous outbreaks, and 2 Marburg genomes as an outgroup; a gene track curated by NCBI; protein annotations curated by UniProt and antibody-binding epitopes curated by IEDB. We have extended the Genome Browser's multiple alignment color-coding scheme to distinguish mutations resulting from non-synonymous coding changes, synonymous changes, or changes in untranslated regions. DISCUSSION: Our Ebola Genome portal at http://genome.ucsc.edu/ebolaPortal/ links to the Ebola virus Genome Browser and an aggregate of useful information, including a collection of Ebola antibodies we are curating.

19.
Nucleic Acids Res ; 42(Database issue): D764-70, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270787

RESUMEN

The University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a large collection of organisms, primarily vertebrates, with an emphasis on the human and mouse genomes. The Browser's web-based tools provide an integrated environment for visualizing, comparing, analysing and sharing both publicly available and user-generated genomic data sets. As of September 2013, the database contained genomic sequence and a basic set of annotation 'tracks' for ∼90 organisms. Significant new annotations include a 60-species multiple alignment conservation track on the mouse, updated UCSC Genes tracks for human and mouse, and several new sets of variation and ENCODE data. New software tools include a Variant Annotation Integrator that returns predicted functional effects of a set of variants uploaded as a custom track, an extension to UCSC Genes that displays haplotype alleles for protein-coding genes and an expansion of data hubs that includes the capability to display remotely hosted user-provided assembly sequence in addition to annotation data. To improve European access, we have added a Genome Browser mirror (http://genome-euro.ucsc.edu) hosted at Bielefeld University in Germany.


Asunto(s)
Bases de Datos Genéticas , Genoma , Genómica , Alelos , Animales , Genoma Humano , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...