Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; : 1-6, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608309

RESUMEN

OBJECTIVE: Intracranial aneurysms (IAs) pose a significant health risk, often leading to subarachnoid hemorrhage and severe neurological outcomes. Endovascular coiling has been a principal treatment method, but it comes with the challenge of high recanalization rates. Aspirin has recently emerged as a potential agent to reduce these rates. In this study, the authors aimed to investigate the impact of regular aspirin use on aneurysm recanalization rates following endovascular coiling in a 10-year single-institution study. METHODS: A retrospective analysis was conducted on a dataset of 2236 aneurysms treated by a single neurosurgeon over a period of 10 years. The primary outcome measure was aneurysm recanalization, defined by a change in the Raymond-Roy Occlusion Classification of at least one grade. RESULTS: A total of 525 aneurysms were coiled, 109 of which involved patients who reported regular use of aspirin. The recanalization rate was significantly lower in the aspirin group (9.2%) compared with the control group (23.6%) (OR 0.33, 95% CI 0.15-0.66; p = 0.001). On analysis of the specific mechanisms of recanalization, aneurysm sac growth was less frequent in the aspirin group (5.5%) compared with the control group (18%) (OR 0.265, 95% CI 0.09-0.63; p = 0.002). Additionally, patients in the control group had a higher retreatment rate (18%) than patients in the aspirin group (5.5%) (OR 0.265, 95% CI 0.09-0.63; p = 0.002). CONCLUSIONS: Regular use of aspirin appears to be associated with reduced rates of aneurysm recanalization after endovascular coiling. However, caution is advised in interpretation of these results given the retrospective nature of this study. Further randomized controlled trials are needed to confirm these findings.

2.
J Clin Transl Sci ; 6(1): e116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36285025

RESUMEN

Background: Integration of clinical skills during graduate training in dual-degree programs remains a challenge. The present study investigated the availability and self-perceived efficacy of clinical continuity strategies for dual-degree trainees preparing for clinical training. Methods: Survey participants were MD/DO-PhD students enrolled in dual-degree-granting institutions in the USA. The response rate was 95% of 73 unique institutions surveyed, representing 56% of the 124 MD-PhD and 7 DO-PhD recognized training programs. Respondents were asked to indicate the availability and self-perceived efficacy of each strategy. Results: Reported available clinical continuity strategies included clinical volunteering (95.6%), medical grand rounds (86.9%), mentored clinical experiences (84.2%), standardized patients/ practice Objective Structured Clinical Examinations (OSCEs) (70.3%), clinical case reviews (45.9%), clinical journal clubs (38.3%), and preclinical courses/review sessions (37.2%). Trainees rated standardized patients (µ = 6.98 ± 0.356), mentored clinical experiences (µ = 6.94 ± 0.301), clinical skills review sessions (µ = 6.89 ± 0.384), preclinical courses/review sessions (µ = 6.74 ± 0.482), and clinical volunteering (µ = 6.60 ± 0.369), significantly (p < 0.050) higher than clinical case review (µ = 5.34 ± 0.412), clinical journal club (µ = 4.75 ± 0.498), and medicine grand rounds (µ = 4.45 ± 0.377). Further, 84.4% of respondents stated they would be willing to devote at least 0.5-1 hour per week to clinical continuity opportunities during graduate training. Conclusion: Less than half of the institutions surveyed offered strategies perceived as the most efficacious in preparing trainees for clinical reentry, such as clinical skills review sessions. Broader implementation of these strategies could help better prepare dual-degree students for their return to clinical training.

3.
APL Bioeng ; 6(1): 010903, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35274072

RESUMEN

Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.

4.
Transl Stroke Res ; 13(6): 866-880, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35218497

RESUMEN

Stroke, which continues to be a leading cause of death and long-term disability worldwide, has often been described as a clinical graveyard. While multiple small molecule therapeutics have undergone clinical trials in stroke, currently only one Food and Drug Administration (FDA)-approved medication exists for the treatment of stroke, the biological, recombinant tissue plasminogen activator (rt-PA). Repurposing of therapeutics which have previously gained FDA approval for alternative indications serves as a prospective option for stroke therapeutic translation. In contrast to de novo drug development, repurposing strategies have patient-centered and economic advantages. These include increased safety, increased chance of approval, decreased time to approval, and decreased capital investment. Presently, 37 active stroke clinical trials utilize repurposed therapeutics with various initial indications and dosing paradigms. The currently studied repurposed therapeutics fall into six mechanistic categories: (1) anticoagulation; (2) vasculature integrity, response, or red blood cell (RBC) alterations; (3) immune system regulation; (4) neurotransmission; and (5) neuroprotection. Directed hypothesis-driven computational investigation utilizing drug databases, in silico drug-protein interaction modeling, genomic data, and consensus methodology can determine if the current mechanistic repurposing categories have the highest chance of translational success or if other mechanistic avenues should be explored. With this increased focus on repurposed therapeutic strategies over de novo strategies, evolution and optimization of regulatory protections are needed to incentivize innovators and investigators.


Asunto(s)
Accidente Cerebrovascular , Activador de Tejido Plasminógeno , Humanos , Activador de Tejido Plasminógeno/uso terapéutico , Reposicionamiento de Medicamentos , Preparaciones Farmacéuticas , Estudios Prospectivos , Accidente Cerebrovascular/tratamiento farmacológico
5.
Front Cell Dev Biol ; 9: 647415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796535

RESUMEN

Inflammation has proven to be a key contributing factor to the pathogenesis of ischemic and hemorrhagic stroke. This sequential and progressive response, marked by proliferation of resident immune cells and recruitment of peripheral immune populations, results in increased oxidative stress, and neuronal cell death. Therapeutics aimed at quelling various stages of this post-stroke inflammatory response have shown promise recently, one of which being differentiated induced pluripotent stem cells (iPSCs). While direct repopulation of damaged tissues and enhanced neurogenesis are hypothesized to encompass some of the therapeutic potential of iPSCs, recent evidence has demonstrated a substantial paracrine effect on neuroinflammation. Specifically, investigation of iPSCs, iPSC-neural progenitor cells (iPSC-NPCs), and iPSC-neuroepithelial like stem cells (iPSC-lt-NESC) has demonstrated significant immunomodulation of proinflammatory signaling and endogenous inflammatory cell populations, such as microglia. This review aims to examine the mechanisms by which iPSCs mediate neuroinflammation in the post-stroke environment, as well as delineate avenues for further investigation.

6.
Sci Rep ; 11(1): 3814, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589720

RESUMEN

Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/diagnóstico , Actividad Motora/fisiología , Animales , Encéfalo/fisiopatología , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Marcha/fisiología , Humanos , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/fisiopatología , Imagen por Resonancia Magnética , Recuperación de la Función/fisiología , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/fisiopatología , Porcinos
7.
J Neurosurg Case Lessons ; 1(24): CASE21183, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35855100

RESUMEN

BACKGROUND: Surgical meshes have found widespread use in neurosurgical practice. While commonly recognized risks of synthetic mesh include infection, exposure of mesh implants, and foreign body reaction, the risk of mesh tethering to neural structures is often overlooked. OBSERVATIONS: The authors presented the first case, to their knowledge, of the disentanglement of mesh interfaced to cortical tissue. The patient, a 68-year-old woman, presented with severe intractable seizure disorder and worsening left hand function and incoordination after meningioma resection and cranioplasty 9 years earlier. Magnetic resonance imaging (MRI) demonstrated interval progression of macrocystic encephalomalacia involving the right supplementary motor area, with fluid-attenuated inversion recovery signal extending posteriorly into the right primary motor cortex. Both computed tomography and MRI suggested potential tethering of the cortex to the overlying cranioplasty mesh. Because of the progressive nature of her condition, the decision was made to surgically remove the tethered mesh. LESSONS: De-tethering brain parenchyma from surgical mesh requires careful microdissection and judicious use of electrocautery to minimize further tissue damage and preserve neurological function. This inadvertent complication evinces the importance of using dural substitutes when unable to primarily repair the dura to prevent scarring and tethering of neural tissues to synthetic cranioplasty materials.

8.
Stem Cell Rev Rep ; 17(2): 357-368, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32712869

RESUMEN

Extracellular vesicles (EVs), nano- to micro- sized vesicles released from cells, have garnered attention in recent years for their role in intercellular communication. Specifically, EVs from various cell sources including stem cells, have shown to have an exacerbatory or therapeutic effect in the content of pro- and anti-inflammatory environments through their interaction with immune recipient cells. This review aims to the coalescence information surrounding EVs derived from various sources and their interaction with microglia in neutral, anti, and pro- inflammatory environments. Overall, in homeostatic environments, EVs from many CNS lineages have been shown to have specific interactions with recipient microglia. In complex inflammatory environments, such as the tumor micro-environment (TME), EVs have been shown to further influence immune dampening through transition of microglia to a more M2-like phenotype. While not advantageous in the TME, this effect can be harnessed therapeutically in proinflammatory neurological conditions such as stroke, Alzheimer's, and Parkinson's. EVs derived from various stem cell and non-stem cell derived sources were found to attenuate proinflammatory responses in microglia in in vitro and in vivo models of these conditions. EVs loaded with anti-inflammatory therapeutics furthered this anti-inflammatory effect on recipient microglia. Graphical Abstract Extracellular Vesicles (EVs) from multiple cells types modulate microglial polarization. Cartoon depicting common ways microglia are activated through inflammatory and disease processes. EVs, derived from stem and non-stem sources, have been shown to attenuate proinflammatory responses in in vitro and in vivo.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , Microglía , Células Madre , Antiinflamatorios
9.
Front Cell Neurosci ; 14: 600441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551749

RESUMEN

Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in 38 38 measured IBA1+ parameters, 34 38   GFAP+ parameters, 32 38 NeuN+ parameters, 31 38 FactorVIII+ parameters, and 28 38 DCX+ parameters were observed in stroked vs. non-stroked animals. Principal component analysis (PCA) and correlation analyses demonstrated that stroke-induced significant and predictable morphological changes that demonstrated strong relationships between IBA1+, GFAP+, and NeuN+ areas. Ultimately, this unbiased, semi-automated HCI and CellProfiler histopathological analysis approach revealed regional and cell specific morphological signatures of immune and neural cells after stroke in a highly translational porcine model. These identified features can provide information of disease pathogenesis and evolution with high resolution, as well as be used in therapeutic screening applications.

10.
Front Neurol ; 11: 594954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551956

RESUMEN

The Stroke Therapy Academic Industry Roundtable (STAIR) has recommended that novel therapeutics be tested in a large animal model with similar anatomy and physiology to humans. The pig is an attractive model due to similarities in brain size, organization, and composition relative to humans. However, multiple pig breeds have been used to study ischemic stroke with potentially differing cerebral anatomy, architecture and, consequently, ischemic stroke pathologies. The objective of this study was to characterize brain anatomy and assess spatiotemporal gait parameters in Yucatan (YC) and Landrace (LR) pigs pre- and post-stroke using magnetic resonance imaging (MRI) and gait analysis, respectively. Ischemic stroke was induced via permanent middle cerebral artery occlusion (MCAO). MRI was performed pre-stroke and 1-day post-stroke. Structural and diffusion-tensor sequences were performed at both timepoints and analyzed for cerebral characteristics, lesion diffusivity, and white matter changes. Spatiotemporal and relative pressure gait measurements were collected pre- and 2-days post-stroke to characterize and compare acute functional deficits. The results from this study demonstrated that YC and LR pigs exhibit differences in gross brain anatomy and gait patterns pre-stroke with MRI and gait analysis showing statistical differences in the majority of parameters. However, stroke pathologies in YC and LR pigs were highly comparable post-stroke for most evaluated MRI parameters, including lesion volume and diffusivity, hemisphere swelling, ventricle compression, caudal transtentorial and foramen magnum herniation, showing no statistical difference between the breeds. In addition, post-stroke changes in velocity, cycle time, swing percent, cadence, and mean hoof pressure showed no statistical difference between the breeds. These results indicate significant differences between pig breeds in brain size, anatomy, and motor function pre-stroke, yet both demonstrate comparable brain pathophysiology and motor outcomes post-stroke. The conclusions of this study suggest pigs of these different breeds generally show a similar ischemic stroke response and findings can be compared across porcine stroke studies that use different breeds.

11.
Transl Stroke Res ; 11(4): 776-788, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31811639

RESUMEN

Magnetic resonance imaging (MRI) is a clinically relevant non-invasive imaging tool commonly utilized to assess stroke progression in real time. This study investigated the utility of MRI as a predictive measure of clinical and functional outcomes when a stroke intervention is withheld or provided, in order to identify biomarkers for stroke functional outcome under these conditions. Fifteen MRI and ninety functional parameters were measured in a middle cerebral artery occlusion (MCAO) porcine ischemic stroke model. Multiparametric analysis of correlations between MRI measurements and functional outcome was conducted. Acute axial and coronal midline shift (MLS) at 24 h post-stroke were associated with decreased survival and recovery measured by modified Rankin scale (mRS) and were significantly correlated with 52 measured acute (day 1 post) and chronic (day 84 post) gait and behavior impairments in non-treated stroked animals. These results suggest that MLS may be an important non-invasive biomarker that can be used to predict patient outcomes and prognosis as well as guide therapeutic intervention and rehabilitation in non-treated animals and potentially human patients that do not receive interventional treatments. Neural stem cell-derived extracellular vesicle (NSC EV) was a disruptive therapy because NSC EV administration post-stroke disrupted MLS correlations observed in non-treated stroked animals. MLS was not associated with survival and functional outcomes in NSC EV-treated animals. In contrast to untreated animals, NSC EVs improved stroked animal outcomes regardless of MLS severity.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/prevención & control , Vesículas Extracelulares/fisiología , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/prevención & control , Células-Madre Neurales/fisiología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/prevención & control , Accidente Cerebrovascular Isquémico/patología , Imagen por Resonancia Magnética , Masculino , Porcinos
12.
J Neurotrauma ; 37(11): 1358-1369, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774030

RESUMEN

The lack of effective therapies for moderate-to-severe traumatic brain injuries (TBIs) leaves patients with lifelong disabilities. Neural stem cells (NSCs) have demonstrated great promise for neural repair and regeneration. However, direct evidence to support their use as a cell replacement therapy for neural injuries is currently lacking. We hypothesized that NSC-derived extracellular vesicles (NSC EVs) mediate repair indirectly after TBI by enhancing neuroprotection and therapeutic efficacy of endogenous NSCs. We evaluated the short-term effects of acute intravenous injections of NSC EVs immediately following a rat TBI. Male NSC EV-treated rats demonstrated significantly reduced lesion sizes, enhanced presence of endogenous NSCs, and attenuated motor function impairments 4 weeks post-TBI, when compared with vehicle- and TBI-only male controls. Although statistically not significant, we observed a therapeutic effect of NSC EVs on brain lesion volume, nestin expression, and behavioral recovery in female subjects. Our study demonstrates the neuroprotective and functional benefits of NSC EVs for treating TBI and points to gender-dependent effects on treatment outcomes, which requires further investigation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Vesículas Extracelulares/fisiología , Vesículas Extracelulares/trasplante , Neuroprotección/fisiología , Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Animales , Lesiones Traumáticas del Encéfalo/fisiopatología , Movimiento Celular/fisiología , Femenino , Humanos , Inyecciones Intravenosas , Masculino , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...