Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 106(7): 2498-505, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15961513

RESUMEN

Multiple cooperating mutations that deregulate different signaling pathways are required to induce cancer. Identifying these cooperating mutations is a prerequisite for developing better combinatorial therapies for treating cancer. Here we show that cooperating cancer mutations can be identified through oncogenic-retrovirus-induced insertional mutagenesis. Among 13 myeloid leukemias induced by transplanting into mice bone marrow cells infected in vitro with a replication-defective retrovirus carrying the Sox4 oncogene, 9 contained insertional mutations at known or suspected cancer genes. This likely occurred because rare bone marrow cells, in which the oncogenic retrovirus happened to integrate and in which it mutated a cooperating cancer gene, were selected because the host harbored a cooperating cancer mutation. Cooperativity between Sox4 and another gene, Mef2c, was subsequently confirmed in transplantation studies, in which deregulated Mef2c expression was shown to accelerate the myeloid leukemia induced by Sox4. Insertional mutagenesis of cooperating cancer genes by a defective oncogenic retrovirus provides a new method for identifying cooperating cancer genes and could aid in the development of better therapies for treating cancer.


Asunto(s)
Técnicas Genéticas , Mutagénesis Insercional , Neoplasias/genética , Virus Oncogénicos/genética , Retroviridae/genética , Animales , Northern Blotting , Southern Blotting , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Trasplante de Células , Terapia Genética/métodos , Vectores Genéticos , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Leucemia Mieloide/genética , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Mutación , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXC , Células Madre/citología , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo
2.
EMBO J ; 23(2): 450-9, 2004 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-14713950

RESUMEN

Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.


Asunto(s)
Anomalías del Ojo/etiología , Hematopoyesis , Proteínas de Homeodominio/fisiología , Proteínas de Neoplasias/fisiología , Neovascularización Patológica/etiología , Animales , Trasplante de Células , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Células Precursoras Eritroides/citología , Femenino , Feto/citología , Marcación de Gen , Mutación de Línea Germinal , Hemorragia/etiología , Proteínas de Homeodominio/genética , Hígado/citología , Hígado/embriología , Megacariocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Células Progenitoras Mieloides/citología , Proteínas de Neoplasias/genética
3.
Blood ; 102(3): 843-8, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12689938

RESUMEN

Efficient retroviral gene transfer to pluripotential hematopoietic stem cells (PHSCs) requires ex vivo culture in multiple hematopoietic growth factors (HGFs) to promote cell division. While treatment of PHSCs with HGF can render stem cells viable targets for retroviral infection, HGFs can promote differentiation, loss of self-renewal potential, and affect the homing/engraftment capacity of PHSCs. To avoid the negative impacts observed with ex vivo transduction protocols, we developed a murine model for in vivo retroviral infection by direct intrafemoral injection (DII), thus abolishing the need for removal of cells from their native microenvironment and the signals necessary to maintain their unique physiology. Using this approach we have demonstrated in vivo retroviral gene transfer to colony-forming units-c (CFU-c), short-term reconstituting cells, and PHSCs. Moreover, direct intrafemoral injection of Jak3 knock-out mice with retroviral particles encoding the Jak3 gene resulted in reconstitution of normally deficient lymphocyte populations concomitant with improved immune function. In addition, DII can be used to target the delivery of other gene therapy vectors including adenoviral vectors to bone marrow cells in vivo. Taken together, these results demonstrate that in vivo retroviral gene transfer by direct intrafemoral injection may be a viable alternative to current ex vivo gene transfer approaches.


Asunto(s)
Técnicas de Transferencia de Gen , Proteínas Tirosina Quinasas/administración & dosificación , Inmunodeficiencia Combinada Grave/terapia , Animales , Fémur , Inmunoterapia , Inyecciones Intramusculares , Janus Quinasa 3 , Ratones , Ratones Noqueados , Fenotipo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/uso terapéutico , Retroviridae/genética , Trasplante de Células Madre
4.
Blood ; 99(2): 600-8, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11781244

RESUMEN

To determine whether infection by a model virus is capable of initiating dendritic cell (DC) differentiation, human CD14(+) peripheral blood monocytes were infected with replication-defective type 5 adenovirus. Under serum-free conditions, this resulted in differentiation of a majority of cells toward a DC phenotype within 36 to 48 hours, without the need for cytokine-induced predifferentiation. Infection induced DC morphology and altered the expression of surface markers, including loss of CD14, de novo induction of CD83 and CD25, and strongly augmented expression of CD86, CD80, CD40, and HLA-DR and HLA class I molecules. Differentiated cells maintained immunophenotype without loss of viability for at least 2 days after removal of the differentiation agent and cytokines. A greatly enhanced capacity to stimulate T-lymphocyte alloproliferation and increased expression of the DC-associated transcription factor RelB were observed. Virus without transgene was found to induce changes similar to transgene-expressing viruses. RelB up-regulation and DC immunophenotype were sensitive to the antioxidant N-acetylcysteine, suggesting a critical role for nuclear factor kappaB. RNAse protection assays revealed elevated levels of messenger RNA for a number of chemokines and cytokines associated with DCs. Finally, during differentiation, adenovirus-infected monocytes were shown to secrete chemokines and cytokines, including tumor necrosis factor-alpha (TNF-alpha). Furthermore, a TNF-alpha-neutralizing antibody inhibited the expression of some DC surface markers, indicating a contributing role for this cytokine in the adenovirus-induced differentiation of DC from monocytes. These findings have implications for the biology of monocytes as precursors to DCs and also for the use of recombinant adenovirus in vaccines or gene therapy.


Asunto(s)
Adenovirus Humanos/fisiología , Virus Defectuosos/fisiología , Células Dendríticas/virología , Vectores Genéticos/fisiología , Monocitos/citología , Acetilcisteína/farmacología , Animales , Presentación de Antígeno , Antígenos CD/biosíntesis , Antígenos CD/genética , Fenómenos Fisiológicos Sanguíneos , Bovinos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Quimiocinas/biosíntesis , Quimiocinas/genética , Medio de Cultivo Libre de Suero/farmacología , Citocinas/biosíntesis , Citocinas/genética , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Receptores de Lipopolisacáridos/análisis , Lipopolisacáridos/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/biosíntesis , Linfocitos T/inmunología , Factor de Transcripción ReIB , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...