Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 60(12): 6896-6915, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37516663

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are now known as parts of a disease spectrum with common pathological features and genetic causes. However, as both conditions are clinically heterogeneous, patient groups may be phenotypically similar but pathogenically and genetically variable. Despite numerous clinical trials, there remains no effective therapy for these conditions, which, in part, may be due to challenges of therapy development in a heterogeneous patient population. Disruption to protein homeostasis is a key feature of different forms of ALS and FTD. Targeting the endogenous protein chaperone system, the heat shock response (HSR) may, therefore, be a potential therapeutic approach. We conducted a preclinical study of a known pharmacological amplifier of the HSR, called arimoclomol, in mice with a mutation in valosin-containing protein (VCP) which causes both ALS and FTD in patients. We demonstrate that amplification of the HSR ameliorates the ALS/FTD-like phenotype in the spinal cord and brain of mutant VCP mice and prevents neuronal loss, replicating our earlier findings in the SOD1 mouse model of ALS. Moreover, in human cell models, we demonstrate improvements in pathology upon arimoclomol treatment in mutant VCP patient fibroblasts and iPSC-derived motor neurons. Our findings suggest that targeting of the HSR may have therapeutic potential, not only in non-SOD1 ALS, but also for the treatment of FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Hidroxilaminas/uso terapéutico , Respuesta al Choque Térmico , Mutación/genética
2.
Ann Clin Transl Neurol ; 8(4): 866-876, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33683023

RESUMEN

OBJECTIVES: To investigate the levels of neurofilaments (NFs) in transgenic mice and patients with spinal muscular atrophy (SMA), and to evaluate their efficacy as a biomarker in SMA. METHODS: The levels of NF mRNA transcripts were measured by quantitative real-time PCR in spinal cord from SMA mice. Blood levels of NF heavy chain (NfH) from mice and patients were measured by an in-house ELISA method. The response of NFs to therapeutic intervention was analysed in severe SMA mice treated with morpholino antisense oligonucleotides. RESULTS: Significant changes in NF transcript and protein in spinal cord and protein levels in blood were detected in SMA mice with severe or mild phenotypes, at different time points. A decrease in blood levels of NfH after antisense oligonucleotide treatment was only transient in the mice, despite the persistent benefit on the disease phenotype. A drastic reduction of over 90% in blood levels of NfF was observed in both control and SMA mice during early postnatal development. In contrast, blood levels of NfH were found to be decreased in older SMA children with chronic disease progression. INTERPRETATION: Our results show that blood NfH levels are informative in indicating disease onset and response to antisense oligonucleotides treatment in SMA mice, and indicate their potential as a peripheral marker reflecting the pathological status in central nervous system. In older patients with chronic SMA, however, the lower NfH levels may limit their application as biomarker, highlighting the need to continue to pursue additional biomarkers for this group of patients.


Asunto(s)
Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Proteínas de Neurofilamentos/metabolismo , Médula Espinal/metabolismo , Adolescente , Animales , Biomarcadores/metabolismo , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/sangre , Proteínas de Neurofilamentos/sangre
3.
PeerJ ; 7: e7983, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772832

RESUMEN

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. METHODS: For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. RESULTS: The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. CONCLUSIONS: This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.

4.
Sci Transl Med ; 8(331): 331ra41, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27009270

RESUMEN

Sporadic inclusion body myositis (sIBM) is the commonest severe myopathy in patients more than 50 years of age. Previous therapeutic trials have targeted the inflammatory features of sIBM but all have failed. Because protein dyshomeostasis may also play a role in sIBM, we tested the effects of targeting this feature of the disease. Using rat myoblast cultures, we found that up-regulation of the heat shock response with arimoclomol reduced key pathological markers of sIBM in vitro. Furthermore, in mutant valosin-containing protein (VCP) mice, which develop an inclusion body myopathy, treatment with arimoclomol ameliorated disease pathology and improved muscle function. We therefore evaluated arimoclomol in an investigator-led, randomized, double-blind, placebo-controlled, proof-of-concept trial in sIBM patients and showed that arimoclomol was safe and well tolerated. Although arimoclomol improved some IBM-like pathology in the mutant VCP mouse, we did not see statistically significant evidence of efficacy in the proof-of-concept patient trial.


Asunto(s)
Homeostasis , Miositis por Cuerpos de Inclusión/metabolismo , Proteínas/metabolismo , Adenosina Trifosfatasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos Clínicos como Asunto , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Hidroxilaminas/farmacología , Hidroxilaminas/uso terapéutico , Mediadores de Inflamación/metabolismo , Ratones , Contracción Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Mutación/genética , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Miositis por Cuerpos de Inclusión/patología , Miositis por Cuerpos de Inclusión/fisiopatología , Ratas , Resultado del Tratamiento , Proteína que Contiene Valosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...