Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36851159

RESUMEN

DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.

2.
NPJ Vaccines ; 7(1): 46, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459271

RESUMEN

We have previously shown that DNA vaccines expressing codon optimized alphavirus envelope glycoprotein genes protect both mice and nonhuman primates from viral challenge when delivered by particle-mediated epidermal delivery (PMED) or intramuscular (IM) electroporation (EP). Another technology with fewer logistical drawbacks is disposable syringe jet injection (DSJI) devices developed by PharmaJet, Inc. These needle-free jet injection systems are spring-powered and capable of delivering vaccines either IM or into the dermis (ID). Here, we evaluated the immunogenicity of our Venezuelan equine encephalitis virus (VEEV) DNA vaccine delivered by either the IM- or ID-DSJI devices in nonhuman primates. The protective efficacy was assessed following aerosol challenge. We found that a prime and single boost by either the IM or ID route resulted in humoral and cellular immune responses that provided significant protection against disease and viremia. Although the ID route utilized one-fifth the DNA dose used in the IM route of vaccination, and the measured humoral and cellular immune responses trended lower, the level of protection was high and performed as well as the IM route for several clinical endpoints.

3.
Mol Genet Metab ; 89(1-2): 19-31, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16839792

RESUMEN

Adenylosuccinate lyase deficiency is a disease of purine metabolism which affects patients both biochemically and behaviorally. The symptoms are variable and include psychomotor retardation, autistic features, hypotonia, and seizures. Patients also accumulate the substrates of ADSL in body fluids. Both the presence of normal levels of ADSL enzyme activities in some patient tissues and the absence of a clear correlation between mutations, biochemistry, and behavior show that the system has unexplored biochemical and/or genetic complexity. It is unclear whether the pathological mechanisms of this disease result from a deficiency of purines, a toxicity of intermediates, or perturbation of another pathway or system. A patient with autistic features and mild psychomotor delay carries two novel mutations in this gene, E80D and D87E. The creation of a mouse model of this disease will be an important step in elucidating the in vivo mechanisms of the disease. Mice carrying mutations that cause ADSL deficiency in humans will be informative as to the effects of these mutations both during embryogenesis and on the brain, possibly leading to therapies for this disease in the future.


Asunto(s)
Adenilosuccinato Liasa/deficiencia , Adenilosuccinato Liasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/enzimología , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Adenilosuccinato Liasa/química , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Conformación Proteica , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico
4.
J Biol Chem ; 279(51): 53789-97, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15471876

RESUMEN

An Australian patient with autism was found to be heterozygous for two mutations in the gene encoding adenylosuccinate lyase (ASL), resulting in the protein mutations E80D and D87E. The patient's mother carried only the E80D mutation. The equivalent positions are 62 and 69 in Bacillus subtilis ASL. Although both human and B. subtilis enzymes normally have Asp at position 87 (or 69), the B. subtilis ASL has Ile and Asp at 62 and 65, respectively, whereas human ASL has Glu and Arg at the equivalent positions. We have constructed, expressed, and purified the double mutant I62E/D65R as a "humanized" normal B. subtilis enzyme to compare with enzymes with a single mutation at position 62 (I62D/D65R), at position 69 (I62E/D65R/D69E), or at both positions (I62D/D65R/D69E). V(max) for conversion of adenylosuccinate to AMP and fumarate is 0.57 micromol/min/mg for I62E/D65R, 0.064 micromol/min/mg for I62D/D65R, 0.27 micromol/min/mg for I62E/D65R/D69E, and 0.069 micromol/min/mg for I62D/D65R/D69E. The K(m) for adenylosuccinate is elevated in the X62D mutants, and I62D/D65R is the least stable of these ASLs at 37 degrees C. The CD spectra of mutant and wild type enzymes are similar; thus, there are no appreciable structural changes. Clearly the Asp(62) causes the most drastic effect on ASL function, whereas the Glu(69) mutation produces only modest change. These results emphasize the importance of expanding tests for ASL deficiency to individuals with developmental delay of any severity, including individuals with autistic spectrum disorder. This study further demonstrates the usefulness of the B. subtilis ASL as a model to mimic the defective enzyme in ASL deficiency.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenilosuccinato Liasa/genética , Trastorno Autístico/genética , Bacillus subtilis/genética , Mutación , Adenosina Monofosfato/química , Secuencia de Aminoácidos , Arginina/química , Ácido Aspártico/química , Dicroismo Circular , ADN/química , Electroforesis en Gel de Poliacrilamida , Salud de la Familia , Femenino , Ácido Glutámico/química , Heterocigoto , Calor , Humanos , Concentración de Iones de Hidrógeno , Cinética , Masculino , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Madres , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Unión Proteica , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Espectrofotometría , Temperatura , Thermotoga maritima/metabolismo , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...