Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Mol Med ; 12(6): e10270, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32383329

RESUMEN

Mutations in MECP2 cause several neurological disorders of which Rett syndrome (RTT) represents the best-defined condition. Although mainly working as a transcriptional repressor, MeCP2 is a multifunctional protein revealing several activities, the involvement of which in RTT remains obscure. Besides being mainly localized in the nucleus, MeCP2 associates with the centrosome, an organelle from which primary cilia originate. Primary cilia function as "sensory antennae" protruding from most cells, and a link between primary cilia and mental illness has recently been reported. We herein demonstrate that MeCP2 deficiency affects ciliogenesis in cultured cells, including neurons and RTT fibroblasts, and in the mouse brain. Consequently, the cilium-related Sonic Hedgehog pathway, which is essential for brain development and functioning, is impaired. Microtubule instability participates in these phenotypes that can be rescued by HDAC6 inhibition together with the recovery of RTT-related neuronal defects. Our data indicate defects of primary cilium as a novel pathogenic mechanism that by contributing to the clinical features of RTT might impact on proper cerebellum/brain development and functioning, thus providing a novel therapeutic target.


Asunto(s)
Síndrome de Rett , Animales , Encéfalo/metabolismo , Proteínas Hedgehog , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Mutación , Síndrome de Rett/genética
2.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349283

RESUMEN

The brain-derived neurotrophic factor (BDNF) plays crucial roles in both the developing and mature brain. Moreover, alterations in BDNF levels are correlated with the cognitive impairment observed in several neurological diseases. Among the different therapeutic strategies developed to improve endogenous BDNF levels is the administration of the BDNF-inducing drug Fingolimod, an agonist of the sphingosine-1-phosphate receptor. Fingolimod treatment was shown to rescue diverse symptoms associated with several neurological conditions (i.e., Alzheimer disease, Rett syndrome). However, the cellular mechanisms through which Fingolimod mediates its BDNF-dependent therapeutic effects remain unclear. We show that Fingolimod regulates the dendritic architecture, dendritic spine density and morphology of healthy mature primary hippocampal neurons. Moreover, the application of Fingolimod upregulates the expression of activity-related proteins c-Fos and pERK1/2 in these cells. Importantly, we show that BDNF release is required for these actions of Fingolimod. As alterations in neuronal structure underlie cognitive impairment, we tested whether Fingolimod application might prevent the abnormalities in neuronal structure typical of two neurodevelopmental disorders, namely Rett syndrome and Cdk5 deficiency disorder. We found a significant rescue in the neurite architecture of developing cortical neurons from Mecp2 and Cdkl5 mutant mice. Our study provides insights into understanding the BDNF-dependent therapeutic actions of Fingolimod.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Clorhidrato de Fingolimod/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Expresión Génica , Regulación de la Expresión Génica , Genes fos , Inmunosupresores/farmacología , Ratones , Células Piramidales/citología , Síndrome de Rett/etiología , Síndrome de Rett/metabolismo
3.
Oncogenesis ; 8(11): 64, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685809

RESUMEN

Medulloblastoma (MB) is the most common malignant childhood brain tumor. About 30% of all MBs belong to the I molecular subgroup, characterized by constitutive activation of the Sonic Hedgehog (Hh) pathway. The Hh pathway is involved in several fundamental processes during embryogenesis and in adult life and its deregulation may lead to cerebellar tumorigenesis. Indeed, Hh activity must be maintained via a complex network of activating and repressor signals. One of these repressor signals is KCASH2, belonging to the KCASH family of protein, which acts as negative regulators of the Hedgehog signaling pathway during cerebellar development and differentiation. KCASH2 leads HDAC1 to degradation, allowing hyperacetylation and inhibition of transcriptional activity of Gli1, the main effector of the Hh pathway. In turn, the KCASH2 loss leads to persistent Hh activity and eventually tumorigenesis. In order to better characterize the physiologic role and modulation mechanisms of KCASH2, we have searched through a proteomic approach for new KCASH2 interactors, identifying Potassium Channel Tetramerization Domain Containing 15 (KCTD15). KCTD15 is able to directly interact with KCASH2, through its BTB/POZ domain. This interaction leads to increase KCASH2 stability which implies a reduction of the Hh pathway activity and a reduction of Hh-dependent MB cells proliferation. Here we report the identification of KCTD15 as a novel player in the complex network of regulatory proteins, which modulate Hh pathway, this could be a promising new target for therapeutic approach against MB.

5.
Sci Rep ; 7: 44079, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276480

RESUMEN

SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Meduloblastoma/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Línea Celular Tumoral , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Supresoras de Tumor/genética , Proteína con Dedos de Zinc GLI1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...