RESUMEN
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Asunto(s)
Adenocarcinoma del Pulmón , Diferenciación Celular , Células Epiteliales , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Aneuploidia , Carcinógenos/toxicidad , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Organoides/efectos de los fármacos , Organoides/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tasa de Supervivencia , Productos de Tabaco/efectos adversos , Productos de Tabaco/toxicidadRESUMEN
A greater understanding of molecular, cellular, and immunological changes during the early stages of lung adenocarcinoma development could improve diagnostic and therapeutic approaches in patients with pulmonary nodules at risk for lung cancer. To elucidate the immunopathogenesis of early lung tumorigenesis, we evaluated surgically resected pulmonary nodules representing the spectrum of early lung adenocarcinoma as well as associated normal lung tissues using single-cell RNA sequencing and validated the results by flow cytometry and multiplex immunofluorescence (MIF). Single-cell transcriptomics revealed a significant decrease in gene expression associated with cytolytic activities of tumor-infiltrating natural killer and natural killer T cells. This was accompanied by a reduction in effector T cells and an increase of CD4+ regulatory T cells (Treg) in subsolid nodules. An independent set of resected pulmonary nodules consisting of both adenocarcinomas and associated premalignant lesions corroborated the early increment of Tregs in premalignant lesions compared with the associated normal lung tissues by MIF. Gene expression analysis indicated that cancer-associated alveolar type 2 cells and fibroblasts may contribute to the deregulation of the extracellular matrix, potentially affecting immune infiltration in subsolid nodules through ligand-receptor interactions. These findings suggest that there is a suppression of immune surveillance across the spectrum of early-stage lung adenocarcinoma. SIGNIFICANCE: Analysis of a spectrum of subsolid pulmonary nodules by single-cell RNA sequencing provides insights into the immune regulation and cell-cell interactions in the tumor microenvironment during early lung tumor development.
Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Monitorización Inmunológica , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Microambiente TumoralRESUMEN
SARS-CoV-2 infection and disease severity are influenced by viral entry (VE) gene expression patterns in the airway epithelium. The similarities and differences of VE gene expression (ACE2, TMPRSS2, and CTSL) across nasal and bronchial compartments have not been fully characterized using matched samples from large cohorts. Gene expression data from 793 nasal and 1673 bronchial brushes obtained from individuals participating in lung cancer screening or diagnostic workup revealed that smoking status (current versus former) was the only clinical factor significantly and reproducibly associated with VE gene expression. The expression of ACE2 and TMPRSS2 was higher in smokers in the bronchus but not in the nose. scRNA-seq of nasal brushings indicated that ACE2 co-expressed genes were highly expressed in club and C15orf48+ secretory cells while TMPRSS2 co-expressed genes were highly expressed in keratinizing epithelial cells. In contrast, these ACE2 and TMPRSS2 modules were highly expressed in goblet cells in scRNA-seq from bronchial brushings. Cell-type deconvolution of the gene expression data confirmed that smoking increased the abundance of several secretory cell populations in the bronchus, but only goblet cells in the nose. The association of ACE2 and TMPRSS2 with smoking in the bronchus is due to their high expression in goblet cells which increase in abundance in current smoker airways. In contrast, in the nose, these genes are not predominantly expressed in cell populations modulated by smoking. In individuals with elevated lung cancer risk, smoking-induced VE gene expression changes in the nose likely have minimal impact on SARS-CoV-2 infection, but in the bronchus, smoking may lead to higher viral loads and more severe disease.
Asunto(s)
COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Detección Precoz del Cáncer , Peptidil-Dipeptidasa A/metabolismo , Neoplasias Pulmonares/metabolismo , Bronquios/metabolismo , Fumar/efectos adversos , Fumar/genéticaRESUMEN
The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents.
RESUMEN
The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.
RESUMEN
Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.
Asunto(s)
Adenocarcinoma del Pulmón/inmunología , Antineoplásicos/inmunología , Lipocalina 2/genética , Lipocalina 2/inmunología , Neoplasias Pulmonares/inmunología , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Animales , Biomarcadores/sangre , Femenino , Regulación de la Expresión Génica , Humanos , Lipocalina 2/sangre , Masculino , Ratones , ARN MensajeroRESUMEN
Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiología , Atlas como Asunto , Transformación Celular Neoplásica/patología , Genómica/métodos , Humanos , Medicina de Precisión/métodos , Análisis de la Célula Individual/métodosRESUMEN
A chemopreventive effect of aspirin (ASA) on lung cancer risk is supported by epidemiologic and preclinical studies. We conducted a randomized, double-blinded study in current heavy smokers to compare modulating effects of intermittent versus continuous low-dose ASA on nasal epithelium gene expression and arachidonic acid (ARA) metabolism. Fifty-four participants were randomized to intermittent (ASA 81 mg daily for one week/placebo for one week) or continuous (ASA 81 mg daily) for 12 weeks. Low-dose ASA suppressed urinary prostaglandin E2 metabolite (PGEM; change of -4.55 ± 11.52 from baseline 15.44 ± 13.79 ng/mg creatinine for arms combined, P = 0.02), a surrogate of COX-mediated ARA metabolism, but had minimal effects on nasal gene expression of nasal or bronchial gene-expression signatures associated with smoking, lung cancer, and chronic obstructive pulmonary disease. Suppression of urinary PGEM correlated with favorable changes in a smoking-associated gene signature (P < 0.01). Gene set enrichment analysis (GSEA) showed that ASA intervention led to 1,079 enriched gene sets from the Canonical Pathways within the Molecular Signatures Database. In conclusion, low-dose ASA had minimal effects on known carcinogenesis gene signatures in nasal epithelium of current smokers but results in wide-ranging genomic changes in the nasal epithelium, demonstrating utility of nasal brushings as a surrogate to measure gene-expression responses to chemoprevention. PGEM may serve as a marker for smoking-associated gene-expression changes and systemic inflammation. Future studies should focus on NSAIDs or agent combinations with broader inhibition of pro-inflammatory ARA metabolism to shift gene signatures in an anti-carcinogenic direction.
Asunto(s)
Aspirina/farmacología , Biomarcadores/análisis , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Mucosa Nasal/metabolismo , Fumadores/estadística & datos numéricos , Fumar/genética , Antiinflamatorios no Esteroideos/farmacología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/epidemiología , Masculino , Persona de Mediana Edad , Mucosa Nasal/efectos de los fármacos , Pronóstico , Fumar/tratamiento farmacológico , Fumar/epidemiologíaRESUMEN
Bronchial premalignant lesions (PMLs) are precursors of lung squamous cell carcinoma, but have variable outcome, and we lack tools to identify and treat PMLs at risk for progression to cancer. Here we report the identification of four molecular subtypes of PMLs with distinct differences in epithelial and immune processes based on RNA-Seq profiling of endobronchial biopsies from high-risk smokers. The Proliferative subtype is enriched with bronchial dysplasia and exhibits up-regulation of metabolic and cell cycle pathways. A Proliferative subtype-associated gene signature identifies subjects with Proliferative PMLs from normal-appearing uninvolved large airway brushings with high specificity. In progressive/persistent Proliferative lesions expression of interferon signaling and antigen processing/presentation pathways decrease and immunofluorescence indicates a depletion of innate and adaptive immune cells compared with regressive lesions. Molecular biomarkers measured in PMLs or the uninvolved airway can enhance histopathological grading and suggest immunoprevention strategies for intercepting the progression of PMLs to lung cancer.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Broncogénico/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Neoplasias Pulmonares/patología , Lesiones Precancerosas/patología , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/inmunología , Biopsia , Bronquios/diagnóstico por imagen , Bronquios/inmunología , Bronquios/patología , Broncoscopía , Carcinoma Broncogénico/genética , Carcinoma Broncogénico/inmunología , Carcinoma Broncogénico/prevención & control , Estudios de Cohortes , Conjuntos de Datos como Asunto , Progresión de la Enfermedad , Detección Precoz del Cáncer/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Tamizaje Masivo/métodos , Persona de Mediana Edad , Lesiones Precancerosas/diagnóstico por imagen , Lesiones Precancerosas/genética , Lesiones Precancerosas/inmunología , ARN Mensajero/genética , Mucosa Respiratoria/citología , Mucosa Respiratoria/diagnóstico por imagen , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Tomografía Computarizada por Rayos X , Regulación hacia ArribaRESUMEN
Rationale: Uninvolved normal-appearing airway epithelium has been shown to exhibit specific mutations characteristic of nearby non-small cell lung cancers (NSCLCs). Yet, its somatic mutational landscape in patients with early-stage NSCLC is unknown.Objectives: To comprehensively survey the somatic mutational architecture of the normal airway epithelium in patients with early-stage NSCLC.Methods: Multiregion normal airways, comprising tumor-adjacent small airways, tumor-distant large airways, nasal epithelium and uninvolved normal lung (collectively airway field), matched NSCLCs, and blood cells (n = 498) from 48 patients were interrogated for somatic single-nucleotide variants by deep-targeted DNA sequencing and for chromosomal allelic imbalance events by genome-wide genotype array profiling. Spatiotemporal relationships between the airway field and NSCLCs were assessed by phylogenetic analysis.Measurements and Main Results: Genomic airway field carcinogenesis was observed in 25 cases (52%). The airway field epithelium exhibited a total of 269 somatic mutations in most patients (n = 36) including key drivers that were shared with the NSCLCs. Allele frequencies of these acquired variants were overall higher in NSCLCs. Integrative analysis of single-nucleotide variants and allelic imbalance events revealed driver genes with shared "two-hit" alterations in the airway field (e.g., TP53, KRAS, KEAP1, STK11, and CDKN2A) and those with single hits progressing to two in the NSCLCs (e.g., PIK3CA and NOTCH1).Conclusions: Tumor-adjacent and tumor-distant normal-appearing airway epithelia exhibit somatic driver alterations that undergo selection-driven clonal expansion in NSCLC. These events offer spatiotemporal insights into the development of NSCLC and, thus, potential targets for early treatment.
Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Transformación Celular Neoplásica/genética , Epitelio/crecimiento & desarrollo , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Mutación , Adenocarcinoma/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Femenino , Humanos , Neoplasias Pulmonares/fisiopatología , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADNRESUMEN
Smoking perpetuates in cytologically normal airways a molecular "field of injury" that is pertinent to lung cancer and early detection. The evolution of airway field changes prior to lung oncogenesis is poorly understood largely due to the long latency of lung cancer in smokers. Here, we studied airway expression changes prior to lung cancer onset in mice with knockout of the Gprc5a gene (Gprc5a-/-) and tobacco carcinogen (NNK) exposure and that develop the most common type of lung cancer, lung adenocarcinoma, within 6 months following exposure. Airway epithelial brushings were collected from Gprc5a-/- mice before exposure and at multiple times post-NNK until time of lung adenocarcinoma development and then analyzed by RNA sequencing. Temporal airway profiles were identified by linear models and analyzed by comparative genomics in normal airways of human smokers with and without lung cancer. We identified significantly altered profiles (n = 926) in the NNK-exposed mouse normal airways relative to baseline epithelia, a subset of which were concordantly modulated with smoking status in the human airway. Among airway profiles that were significantly modulated following NNK, we found that expression changes (n = 22) occurring as early as 2 months following exposure were significantly associated with lung cancer status when examined in airways of human smokers. Furthermore, a subset of a recently reported human bronchial gene classifier (Percepta; n = 56) was enriched in the temporal mouse airway profiles. We underscore evolutionarily conserved profiles in the normal-appearing airway that develop prior to lung oncogenesis and that comprise viable markers for early lung cancer detection in suspect smokers. Cancer Prev Res; 11(4); 237-48. ©2018 AACR.
Asunto(s)
Adenocarcinoma/patología , Bronquios/metabolismo , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Receptores Acoplados a Proteínas G/fisiología , Fumar/efectos adversos , Adenocarcinoma/etiología , Animales , Bronquios/patología , Transformación Celular Neoplásica/genética , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Genómica , Humanos , Neoplasias Pulmonares/etiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrosaminas/toxicidadRESUMEN
Lung cancer remains the leading cause of cancer-related death due to its advanced stage at diagnosis. Early detection of lung cancer can be improved by better defining who should be screened radiographically and determining which imaging-detected pulmonary nodules are malignant. Gene expression biomarkers measured in normal-appearing airway epithelium provide an opportunity to use lung cancer-associated molecular changes in this tissue for early detection of lung cancer. Molecular changes in the airway may result from an etiologic field of injury and/or field cancerization. The etiologic field of injury reflects the aberrant physiologic response to carcinogen exposure that creates a susceptible microenvironment for cancer initiation. In contrast, field cancerization reflects effects of "first-hit" mutations in a clone of cells from which the tumor ultimately arises or the effects of the tumor on the surrounding tissue. These fields might have value both for assessing lung cancer risk and diagnosis. Cancer-associated gene expression changes in the bronchial airway have recently been used to develop and validate a 23-gene classifier that improves the diagnostic yield of bronchoscopy for lung cancer among intermediate-risk patients. Recent studies have demonstrated that these lung cancer-related gene expression changes extend to nasal epithelial cells that can be sampled noninvasively. While the bronchial gene expression biomarker is being adopted clinically, further work is necessary to explore the potential clinical utility of gene expression profiling in the nasal epithelium for lung cancer diagnosis, lung cancer risk assessment, and precision medicine for lung cancer treatment and chemoprevention. Clin Cancer Res; 24(13); 2984-92. ©2018 AACR.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transcriptoma , Transformación Celular Neoplásica/genética , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Detección Precoz del Cáncer , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/etiología , Técnicas de Diagnóstico Molecular , Factores de Riesgo , Fumar/efectos adversosRESUMEN
There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF-mutant cases. Integrative analysis revealed profiles expressed in KRAS-mutant cases (UBE2C, REL) and BRAF-mutant cases (MAX) of AAH, or common to both sets of cases (suppressed AXL). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB) and elevated protumor (CCR2, CTLA-4) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR.
Asunto(s)
Adenocarcinoma/genética , Genómica , Neoplasias Pulmonares/genética , Pulmón/metabolismo , Lesiones Precancerosas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma/patología , Anciano , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Hiperplasia/genética , Pulmón/patología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
Purpose: Lung cancer is the leading cause of cancer-related death in the United States. The molecular events preceding the onset of disease are poorly understood, and no effective tools exist to identify smokers with premalignant lesions (PMLs) that will progress to invasive cancer. Prior work identified molecular alterations in the smoke-exposed airway field of injury associated with lung cancer. Here, we focus on an earlier stage in the disease process leveraging the airway field of injury to study PMLs and its utility in lung cancer chemoprevention.Experimental Design: Bronchial epithelial cells from normal appearing bronchial mucosa were profiled by mRNA-Seq from subjects with (n = 50) and without (n = 25) PMLs. Using surrogate variable and gene set enrichment analysis, we identified genes, pathways, and lung cancer-related gene sets differentially expressed between subjects with and without PMLs. A computational pipeline was developed to build and test a chemoprevention-relevant biomarker.Results: We identified 280 genes in the airway field associated with the presence of PMLs. Among the upregulated genes, oxidative phosphorylation was strongly enriched, and IHC and bioenergetics studies confirmed pathway findings in PMLs. The relationship between PMLs and squamous cell carcinomas (SCC) was also confirmed using published lung cancer datasets. The biomarker performed well predicting the presence of PMLs (AUC = 0.92, n = 17), and changes in the biomarker score associated with progression/stability versus regression of PMLs (AUC = 0.75, n = 51).Conclusions: Transcriptomic alterations in the airway field of smokers with PMLs reflect metabolic and early lung SCC alterations and may be leveraged to stratify smokers at high risk for PML progression and monitor outcome in chemoprevention trials. Clin Cancer Res; 23(17); 5091-100. ©2017 AACR.
Asunto(s)
Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Lesiones Precancerosas/genética , ARN Mensajero/genética , Adulto , Anciano , Bronquios/metabolismo , Bronquios/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Lesiones Precancerosas/patología , Fumadores , Fumar/genética , Transcriptoma/genéticaRESUMEN
Previous preclinical studies and a phase I clinical trial suggested that myo-inositol may be a safe and effective lung cancer chemopreventive agent. We conducted a randomized, double blind, placebo-controlled phase IIb study to determine the chemopreventive effects of myo-inositol in smokers with bronchial dysplasia. Smokers with ≥1 site of dysplasia identified by autofluorescence bronchoscopy-directed biopsy were randomly assigned to receive oral placebo or myo-inositol, 9 g once a day for 2 weeks, and then twice a day for 6 months. The primary endpoint was change in dysplasia rate after 6 months of intervention on a per-participant basis. Other trial endpoints reported herein include Ki-67 labeling index, blood and bronchoalveolar lavage fluid (BAL) levels of proinflammatory, oxidant/antioxidant biomarkers, and an airway epithelial gene expression signature for PI3K activity. Seventy-four (n = 38 myo-inositol and n = 36 placebo) participants with a baseline and 6-month bronchoscopy were included in all efficacy analyses. The complete response and the progressive disease rates were 26.3% versus 13.9% and 47.4% versus 33.3%, respectively, in the myo-inositol and placebo arms (P = 0.76). Compared with placebo, myo-inositol intervention significantly reduced IL6 levels in BAL over 6 months (P = 0.03). Among those with a complete response in the myo-inositol arm, there was a significant decrease in a gene expression signature reflective of PI3K activation within the cytologically normal bronchial airway epithelium (P = 0.002). The heterogeneous response to myo-inositol suggests a targeted therapy approach based on molecular alterations is needed in future clinical trials to determine the efficacy of myo-inositol as a chemopreventive agent. Cancer Prev Res; 9(12); 906-14. ©2016 AACR.
Asunto(s)
Bronquios/efectos de los fármacos , Bronquios/patología , Inositol/uso terapéutico , Neoplasias Pulmonares/prevención & control , Fumar/efectos adversos , Complejo Vitamínico B/uso terapéutico , Anciano , Biomarcadores de Tumor/metabolismo , Biopsia , Líquido del Lavado Bronquioalveolar , Broncoscopía , Quimioprevención , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Glucosa/metabolismo , Humanos , Hiperplasia/tratamiento farmacológico , Hiperplasia/patología , Inositol/administración & dosificación , Inositol/farmacología , Antígeno Ki-67/metabolismo , Neoplasias Pulmonares/patología , Masculino , Metaplasia/tratamiento farmacológico , Metaplasia/patología , Persona de Mediana Edad , Imagen Óptica , Fosfatidilinositol 3-Quinasas/genética , Tomografía Computarizada Espiral , Complejo Vitamínico B/administración & dosificación , Complejo Vitamínico B/farmacologíaRESUMEN
Visually normal cells adjacent to, and extending from, tumors of the lung may carry molecular alterations characteristics of the tumor itself, an effect referred to as airway field of cancerization. This airway field has been postulated as a model for early events in lung cancer pathogenesis. Yet the genomic landscape of somatically acquired molecular alterations in airway epithelia of lung cancer patients has remained unknown. To begin to fill this void, we sought to comprehensively characterize the genomic architecture of chromosomal alterations inducing allelic imbalance (AI) in the airway field of the most common type of lung tumors, non-small cell lung cancer (NSCLC). To do so, we conducted a genome-wide survey of multiple spatially distributed normal-appearing airways, multiregion tumor specimens, and uninvolved normal tissues or blood from 45 patients with early-stage NSCLC. We detected alterations in airway epithelia from 22 patients, with an increased frequency in NSCLCs of squamous histology. Our data also indicated a spatial gradient of AI in samples at closer proximity to the NSCLC. Chromosome 9 displayed the highest levels of AI and comprised recurrent independent events. Furthermore, the airway field AI included oncogenic gains and tumor suppressor losses in known NSCLC drivers. Our results demonstrate that genome-wide AI is common in the airway field of cancerization, providing insights into early events in the pathogenesis of NSCLC that may comprise targets for early treatment and chemoprevention. Cancer Res; 76(13); 3676-83. ©2016 AACR.
Asunto(s)
Adenocarcinoma/genética , Desequilibrio Alélico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Genoma Humano , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Aberraciones Cromosómicas , Estudios de Seguimiento , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Células Tumorales CultivadasRESUMEN
The majority of cancer-related deaths in the United States and worldwide are attributed to lung cancer. There are more than 90 million smokers in the United States who represent a significant population at elevated risk for lung malignancy. In other epithelial tumors, it has been shown that if neoplastic lesions can be detected and treated at their intraepithelial stage, patient prognosis is significantly improved. Thus, new strategies to detect and treat lung preinvasive lesions are urgently needed in order to decrease the overwhelming public health burden of lung cancer. Limiting these advances is a poor knowledge of the earliest events that underlie lung cancer development and that would constitute markers and targets for early detection and prevention. This review summarizes the state of knowledge of human lung cancer pathogenesis and the molecular pathology of premalignant lung lesions, with a focus on the molecular premalignant field that associates with lung cancer development. Lastly, we highlight new approaches and models to study genome-wide alterations in human lung premalignancy in order to facilitate the discovery of new markers for early detection and prevention of this fatal disease. Cancer Prev Res; 9(7); 518-27. ©2016 AACR.
Asunto(s)
Biomarcadores de Tumor/análisis , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/patología , Animales , Detección Precoz del Cáncer/tendencias , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/genética , Lesiones Precancerosas/patologíaRESUMEN
The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway-based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome-sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high-risk women was also identified by pathway-based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high-risk and control women, using cell-based functional assays, drug-response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell-based experiments indicate that cell-cell and cell-extracellular matrix adhesion processes seem to be disrupted in non-malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development.