Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(1): 158-163.e2, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36462506

RESUMEN

Marine heat waves (MHWs) are extended periods of excessively warm water1 that are increasing in frequency, duration, intensity, and impact, and they likely represent a greater threat to marine ecosystems than the more gradual increases in sea surface temperature.2,3,4 Sponges are major and important components of global benthic marine communities,5,6,7 with earlier studies identifying tropical sponges as potential climate change "winners."8,9,10,11 In contrast, cold-water sponges may be less tolerant to predicted ocean warming and concurrent MHWs. Here, we report how a series of unprecedented MHWs in New Zealand have impacted millions of sponges at a spatial scale far greater than previously reported anywhere in the world. We reported sponge tissue necrosis12 and bleaching (symbiont loss/dysfunction),13 which have been previously associated with temperature stress,6,12,14 for three common sponge species across multiple biogeographical regions, with the severity of impact being correlated with MHW intensity. Given the ecological importance of sponges,15 their loss from these rocky temperate reefs will likely have important ecosystem-level consequences.


Asunto(s)
Ecosistema , Poríferos , Animales , Calor , Cambio Climático , Temperatura , Agua , Arrecifes de Coral
2.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093219

RESUMEN

Many prey species induce defences in direct response to predation cues. However, prey defences could also be enhanced by predators indirectly via mechanisms that increase resource availability to prey, e.g. trophic cascades. We evaluated the relative impacts of these direct and indirect effects on the mechanical strength of the New Zealand sea urchin Evechinus chloroticus We measured crush-resistance of sea urchin tests (skeletons) in (i) two marine reserves, where predators of sea urchins are relatively common and have initiated a trophic cascade resulting in abundant food for surviving urchins in the form of kelp, and (ii) two adjacent fished areas where predators and kelps are rare. Sea urchins inhabiting protected rocky reefs with abundant predators and food had more crush-resistant tests than individuals on nearby fished reefs where predators and food were relatively rare. A six-month long mesocosm experiment showed that while both food supply and predator cues increased crush-resistance, the positive effect of food supply on crush-resistance was greater. Our results demonstrate a novel mechanism whereby a putative morphological defence in a prey species is indirectly strengthened by predators via cascading predator effects on resource availability. This potentially represents an important mechanism that promotes prey persistence in the presence of predators.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Conducta Predatoria , Erizos de Mar/fisiología , Animales , Nueva Zelanda
3.
Oecologia ; 183(3): 821-829, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28091726

RESUMEN

It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.


Asunto(s)
Señales (Psicología) , Cadena Alimentaria , Animales , Ecosistema , Conducta Predatoria , Erizos de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...