Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 271: 127363, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989760

RESUMEN

Microorganisms produce active surface agents called lipopeptides (LPs) which are amphiphilic in nature. They are cyclic or linear compounds and are predominantly isolated from Bacillus and Pseudomonas species. LPs show antimicrobial activity towards various plant pathogens and act by inhibiting the growth of these organisms. Several mechanisms are exhibited by LPs, such as cell membrane disruption, biofilm production, induced systematic resistance, improving plant growth, inhibition of spores, etc., making them suitable as biocontrol agents and highly advantageous for industrial utilization. The biosynthesis of lipopeptides involves large multimodular enzymes referred to as non-ribosomal peptide synthases. These enzymes unveil a broad range of engineering approaches through which lipopeptides can be overproduced and new LPs can be generated asserting high efficacy. Such approaches involve several synthetic biology systems and metabolic engineering techniques such as promotor engineering, enhanced precursor availability, condensation domain engineering, and adenylation domain engineering. Finally, this review provides an update of the applications of lipopeptides in various fields.


Asunto(s)
Bacillus , Lipopéptidos , Lipopéptidos/metabolismo , Lipopolisacáridos , Bacillus/metabolismo , Biopelículas , Pseudomonas/metabolismo
2.
Indian J Microbiol ; 62(3): 456-467, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974925

RESUMEN

Indiscriminate discharge of heavy metals/metalloids from different sources into the sustainable agro-ecosystem is a major global concern for food security and human health. Arsenic (As), categorized as group one human carcinogen is a quintessential toxic metalloid that alters the microbial compositions and functions, induce physiological and metabolic changes in plants and contaminate surface/ground water. The management of arsenic toxicity, therefore, becomes imminent. Acknowledging the arsenic threat, the study was aimed at identifying arsenic resistant bacteria and evaluating its arsenic removal/detoxification potential. Of the total 118 bacterial isolates recovered from arsenic rich environment, the bacterial strain RSC3 demonstrating highest As tolerance was identified as Enterobacter cloacae by 16S rRNA gene sequence analysis. Enterobacter cloacae tolerated high concentration (6000 ppm) of As and exhibited 0.55 h-1 of specific growth rate as calculated from growth kinetics data. Strain RSC3 also displayed varying level of resistance to other heavy metals and many antibacterial drugs in plate bioassay. The bacterial strain RSC3 possessed gene (arsC) which causes transformation of arsenate to arsenite. The arsenate uptake and efflux of the bacterial cells was revealed by high throughput techniques such as AAS, SEM/TEM and EDX. The simultaneous As reducing ability, and multi metal/multi-antibiotics resistance potentials of E. cloacae provides a promising option in the microbes based remediation of As contaminated environments.

3.
Indian J Microbiol ; 61(2): 229-233, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33927464

RESUMEN

Concrete structures are prone to develop cracks and cause devastation. Repair and renovation are not enough to ensure complete eradication of crack development. The entire process is costly and laborious. The microbiologically induced calcium carbonated precipitation can be effective in restoring the cracks. The calcium-based nutrients along with specific bacterial strain have been used in the present investigation. The pellets of calcium as per Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy are deposited in the cracks of the concrete over a period of 7 days of incubation. The presence of bacteria in the calcium precipitates as demonstrated by scanning electron microscope provides adequate strength and adhering quality to the pellets. The effective filling of cracks is confirmed with the help ultrasonic pulse velocity test also. Since, elephantine heritage and high sky buildings have high maintenance costs, the use of present technique will cut down the cost and duration of restoration. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12088-020-00916-0) contains supplementary material, which is available to authorized users.

4.
Indian J Microbiol ; 59(3): 321-327, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388209

RESUMEN

Microbes can serve as mediators for the fabrication of complicated nano-structures, obviating the tedious and time-consuming methods of synthesis. The shape of a nanoparticle has a very prominent role in defining the functionality in prospective arenas. So, the flower shaped nanoparticles are in focus nowadays due to their enhanced electrocatalytic and optical properties as compared to the spherical ones. We present the biosynthesis of flower shaped gold nanoparticles by Bacillus subtilis RSB64 and process parameters optimization using central composite design. The two well-separated scattering spectra showing absorption peaks at 540 nm and 750 nm indicate the presence of anisotropic gold nanoparticles and the results were corroborated by transmission electron microscopy analysis. The presence of gold nanoparticles was further confirmed by energy dispersive X-ray studies. The functional groups responsible for the stability of gold nanoparticles were predicted by Fourier transform infrared spectroscopy. The gold nanoparticles biosynthesis were collective effects of three experimental process parameters viz pH, temperature and precursor concentration. These three parameters were statistically optimized wherein pH 11.0, substrate concentration 1:1 (v/v) and temperature of 50 °C resulted in the synthesis of stable flower shaped gold nanoparticles of 50 nm size. The results indicated the tailored biosynthesis of gold nanoparticles with a flower like morphology by multi process parameter analysis to finalize robust conditions for the synthesis using B. subtilis RSB64. These gold nanoflowers demonstrate increased surface area efficiency/reactivity and could be employed for sustained and controlled delivery of drugs.

5.
Int J Nanomedicine ; 14: 9905-9916, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31908448

RESUMEN

PURPOSE: Antibiotics are currently being rendered non-functional by the rising incidence of multi-drug resistance amongst pathogenic bacteria. Research has now been focused on developing solutions to this problem by creating new antibiotics and enhancing the functionality of the existing ones. PATIENTS AND METHODS: In the present study, ciprofloxacin was conjugated to biogenic gold nanoflowers (GNFs) from Bacillus subtilis RSB64 by a robust adsorption method under optimized conditions. The resultant drug-nanoflower conjugate was characterized by UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR). Addition of ciprofloxacin to gold nanoflowers changed the extinction spectrum towards longer wavelength. The ciprofloxacin-conjugated gold nanoflowers were tested for the drug release statistically. The prepared nanoflower-drug conjugate was subjected to an in vitro microbiological assay against different Gram-positive and Gram-negative bacterial strains to verify the effect of GNF-ciprofloxacin conjugate on the cell growth inhibitory activity of ciprofloxacin. RESULTS: The GNF-ciprofloxacin conjugates demonstrated enhanced bactericidal activity against Gram-negative bacteria as compared to Gram-positive. The enhancement of the antibacterial activity of the nanoflower-drug conjugate could be attributed to the interaction of the conjugate with phosphate/amine group of the outer membrane of Gram-negative bacterial cell wall making them susceptible to the antibacterial effect of the conjugate. CONCLUSION: This study demonstrates the positive attributes of GNF-ciprofloxacin conjugates as a promising antibacterial therapeutic agent against pathogens.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/química , Antibacterianos/administración & dosificación , Antibacterianos/química , Bacillus subtilis/química , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Oro/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Nanoestructuras/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA