Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 133: 106395, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36753964

RESUMEN

Breast cancer is a heterogeneous malignancy with wide-ranging variations in therapeutic responses, overall survival etc. Major challenges for available chemotherapeutic agents in achieving clinical success are in maintaining systemic bio-distribution and avoiding non-specific adverse effects. Bis-arylidene oxindoles are estrogen receptor (ER)-selective bioactive molecules with moderate potency. In here, we have designed, synthesized and evaluated a series of twin aliphatic chain cationic lipid-conjugated bis-arylidene oxindole molecules with variations in nature of linker, lengths of carbon spacer and hydrophobic twin chains. We observed that among the various structural analogues, C8 twin-chain containing molecules, PGC8, S2C8 and S3C8 showed effective cancer cell-selective cytotoxicity in different cancer cell lines with an IC50 ranging from 4 to 7 µM. These molecules selectively induced apoptosis, ROS production and cell cycle inhibition at G1/S phase in ER + breast cancer cells but not in non-cancer cells. Additionally, these molecules formed homogenous self-assemblies exhibiting effective hydrodynamic diameter with positive surface charge. The self-assemblies also showed prominent cancer cell-selective uptake and DNA-binding abilities. Hence, we have shown successful incorporation of dexamethasone to the self-assemblies, and its enhanced cytotoxicity even in ER-negative breast cancer cells. All these results indicate that PGC8, S2C8 and S3C8 molecules, albeit their potent and selective ER-positive anti-breast cancer activity, can be repurposed as targeted delivery systems and hold promise as unique, broader spectrum breast cancer cell-selective therapeutic payloads.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Oxindoles/farmacología , Oxindoles/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular , Puntos de Control del Ciclo Celular , Lípidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral
2.
Nanomedicine (Lond) ; 16(8): 641-656, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33769068

RESUMEN

Background: Thymoquinone (TQ) has potential anti-inflammatory, immunomodulatory and anticancer effects but its clinical use is limited by its low solubility, poor bioavailability and rapid clearance. Aim: To enhance systemic bioavailability and tumor-specific toxicity of TQ. Materials & methods: Cationic liposomal formulation of TQ (D1T) was prepared via ethanol injection method and their physicochemical properties, anticancer effects in orthotopic xenograft pancreatic tumor model and pharmacokinetic behavior of D1T relative to TQ were evaluated. Results: D1T showed prominent inhibition of pancreatic tumor progression, significantly greater in vivo absorption, approximately 1.5-fold higher plasma concentration, higher bioavailability, reduced volume of distribution and improved clearance relative to TQ. Conclusion: Encapsulation of TQ in cationic liposomal formulation enhanced its bioavailability and anticancer efficacy against xenograft pancreatic tumor.


Asunto(s)
Liposomas , Benzoquinonas , Disponibilidad Biológica , Línea Celular Tumoral , Humanos , Solubilidad
3.
Biomed Mater ; 16(2): 024105, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33434900

RESUMEN

High mortality rate in colon cancer patients is often attributed to late diagnosis. To overcome the conventional chemotherapy associated challenges, chemotherapeutic drugs (single or combination) or genetic drugs are often delivered using ligand-modified delivery systems that selectively target over expressed receptors or particular receptors that act abnormally in cancer cells. In the current investigation, first we assessed anti-colon cancer effect of a cationic estrogenic molecule, ESC8 which was earlier shown to act against estrogen receptor (ER) ± breast cancer cells. We found that against both colon and breast cancer cells the anticancer activity is intervened by AMPK-mTOR pathway and at the same time it acts as anti-angiogenic agent. It also showed enhancement of mesenchymal-to-epithelial (MET) transition as well as reduction of cyclin D in both cells. Earlier we demonstrated the use of glucocorticoid receptor (GR) targeted cationic liposomal delivery system carrying anti-Hsp90 plasmid and ESC8 to act as potent anti-skin cancer therapeutics. As ESC8 demonstrated anti-colon cancer effect in vitro, in here, we used the same GR-targeted liposomal formulation but carrying a more fusogenic cationic lipid D1 and used against colon tumor orthotopic model in mice. We show that GR targeted formulation (D1XE-Hsp90) exhibited efficient cellular uptake, transfection and selective cytotoxicity in colon cancer cells, tumor-targeted bio-distribution and enhanced survivability, reduced tumor size in orthotopic colon tumor-bearing mice. The tumor sections exhibited reduced tumor proliferation as well as neo-vascularization, thus supporting the holistic antitumor effect of the D1XE-Hsp90 formulation. Over all our results establish the GR-targeted D1XE-Hsp90 formulation as potent anti-colon cancer therapeutics.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Estradiol/análogos & derivados , Proteínas HSP90 de Choque Térmico/química , Liposomas/química , Receptores de Glucocorticoides/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Embrión de Pollo , Ensayos de Selección de Medicamentos Antitumorales , Estradiol/administración & dosificación , Estradiol/farmacología , Femenino , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
4.
Mol Pharm ; 18(3): 1208-1228, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33371687

RESUMEN

Hydrocortisone, a natural glucocorticoid secreted by adrenal and extra-adrenal tissues, locally governs the transcription of genes involved in inflammation, immune response, metabolism, and energy homeostasis via binding to its cognate glucocorticoid receptor (GR). In this study, we show that modified hydrocortisone (HC16), a cancer-selective cytotoxic molecule, showed synergism in combination with drugs like Doxorubicin and docetaxel, self-assembled into vesicles, entrapped docetaxel and complexed with anti-cancer plasmid DNA for enhanced killing of cancer cells. These vesicles exhibited GR-mediated nuclear localization, delivery of the p53 gene, and also inhibited cell viability selectively in RKO, HCT15, and CT26 colon cancer cells but not in normal cells like CHO and HEK293T. Apart from exerting its own anti-cancer activity, the self-assembled HC16 vesicles loaded with docetaxel sensitized the cancer cells to its drug cargo by downregulating the drug metabolizing CYP3A4 gene. This indirectly reduces the risk of nonspecific adverse effects in normal cells, as the viability of sensitized cancer cells could be significantly reduced even in low doses of cytotoxic docetaxel. The near infrared (NIR)-dye-associated self-assemblies accumulated in a colon tumor with higher orders of NIR intensity compared to those in a colon of healthy mice. Thereafter, the treatment of HC16-docetaxel-p53 vesicle/DNA complex led to significant tumor regression, which resulted in a cecum/body weight ratio in tumor-bearing mice similar to that of healthy mice measured at 24 h postcompletion of treatment. There was an up to 2.5-fold enhancement in the overall survivability of colon-tumor-bearing mice treated with HC16-docetaxel-p53 vesicle/DNA complexes when compared against the pristine docetaxel-treated groups. Further, the HC16-docetaxel-p53 vesicle/DNA complex-treated group showed reduced nuclear accumulation of cell proliferation marker Ki67, reduced protein levels of prosurvival and mesenchymal proteins like Bcl-2, PARP, vimentin, and N-cadherin, and increased the levels of pro-apoptotic activated caspases as compared to the pristine docetaxel-treated groups. The therapeutic package described herein is expected to find future use as a rational, multifaceted, GR-targeted approach for inhibiting colon tumor progression.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Hidrocortisona/farmacología , Receptores de Glucocorticoides/metabolismo , Células A549 , Animales , Apoptosis/efectos de los fármacos , Células CHO , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Cricetulus , Docetaxel/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH
5.
Nanotoxicology ; 13(9): 1161-1175, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31294672

RESUMEN

Cationic lipids are well-known excipients for nanometric liposomal gene delivery systems. However, because of the suspected, collateral toxicity in normal cells, the use of cationic lipids for the treatment of human tumor is largely limited. Recently, we developed a glucocorticoid receptor (GR)-targeted liposomal, anticancer delivery system (DXE nano-lipoplex), which carried cationic lipid of saturated twin aliphatic chains. It exhibited efficient anti-tumor effect in aggressive and drug-resistant tumor models. Toward exploring lipoplex's human clinical use, we incorporated another nano-lipoplex (D1XE) group that carried cationic lipid with one of its aliphatic chain carrying unsaturation and compared in vivo genotoxicological profiling-based safety assessment and the respective anti-tumor efficacy of the lipoplexes. Thus, both the lipoplexes differ only by the chemical identity of one of their constituent cationic lipid. Unsaturated aliphatic chains in lipid generally impart efficient cell surface fusogenic property in lipid formulations. Herein, we report that nanoplex with unsaturated cationic lipid (D1XE) exhibited better physical appearance with less flocculent behavior than nanoplex with saturated lipid (DXE). Upon multiple injections, D1XE nanoplex imparted better tumor regression but most importantly, exhibited much lower overall toxicity (e.g. genotoxicity, weight loss, etc.) than DXE nanoplex. With a higher antitumor effect but a lower genotoxic effect, D1XE is proved to be a better nanoplex than DXE for the potential clinical trial. Thus, this study clearly delineates the importance of incorporating a constituent lipid that carries a single unsaturated aliphatic chain toward developing efficient anti-tumor nano-lipoplexes with reduced genotoxicity.


Asunto(s)
Lípidos/química , Nanoestructuras/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Cationes , Aberraciones Cromosómicas , Daño del ADN , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Liposomas , Masculino , Ratones , Nanoestructuras/toxicidad , Transfección
6.
Nanoscale Adv ; 1(9): 3555-3567, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133563

RESUMEN

Glioblastoma multiforme (GBM), the highly invasive form of glioma, exhibits the highest mortality in patients with brain malignancies. Increasing glioma patients' survivability is challenging, as targeting only tumor-associated malignant cells would not reduce the overall aggressiveness of the tumor mass. This is due to the inadequacy in countering pro-proliferative, invasive and metastatic factors released by tumor-mass associated macrophages (TAMs). Hence, strategically, dual targeting both tumor cells and TAMs is necessary for effective glioma treatment and increased survivability. Conventional FR-targeting systems can easily target cancer cells that overtly express folate receptors (FRs). However, FRs are expressed only moderately in both glioma cells and in TAMs. Hence, it is more challenging to coordinate dual targeting of glioma cells and TAMs with lower levels of FR expression. A recently developed carbon nanosphere (CSP) with effective blood-brain barrier (BBB) penetrability was modified with a new folic acid-cationic lipid conjugate (F8) as a targeting ligand. The uniqueness of the cationic lipid-folate conjugate is that it stably associates with the negatively charged CSP surface at about >22 mol% surface concentration, a concentration at least 5-fold higher than what is achieved for conventional FR-targeting delivery systems. This enabled dual uptake of the CSP on TAMs and tumor cells via FRs. A doxorubicin-associated FR-targeting formulation (CFD), in an orthotopic glioma model and in a glioma subcutaneous model, induced the maximum anticancer effect with enhanced average mice survivability twice that of untreated mice and without any systemic liver toxicity. Additionally, we observed a significant decrease of TAM-released pro-aggressive factors, TGF-ß, STAT3, invasion and migration related sICAM-1, and other cytokines indicating anti-TAM activity of the CFD. Taken together, we principally devised, to the best of our knowledge, the first FR-targeting nano-delivery system for targeting brain-associated TAMs and tumor cells as an efficient glioma therapeutic.

7.
Biochemistry ; 57(46): 6514-6527, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30369235

RESUMEN

Porphyrins are well-known anticancer agents because of their high binding affinity for G-quadruplex DNA and excellent photophysical properties. Several studies carried out using TMPyP4 established it as an efficient chemotherapeutic and a photodynamic therapeutic (PDT) agent, but its use as a lead molecule has been restricted because of its high level of binding to double-stranded DNA (dsDNA), which may have side effects on normal cells and tissues. To minimize its interaction with dsDNA and to enhance internalization into cells, an analogue of TMPyP4 (5Me) was synthesized. Its selectivity for G-quadruplex DNA over dsDNA was evaluated by spectroscopic methods, and its role in stabilizing G-quadruplex DNA was assessed by fluorescence lifetime and thermal melting experiments. Biophysical studies indicated that 5Me interacts well with G-quadruplex DNA. In vitro cytotoxicity experiments with tumor cell lines (PANC-1, B16F10, and MDA MB 231) have revealed that 5Me can inhibit the growth of cancer cells comparable to TMPyP4. MTT and apoptotic assays demonstrated the ability of 5Me to specifically affect cancer cells over normal cells. Cell cycle analysis showed that 5Me, like TMPyP4, induces G2/M phase cell cycle arrest. In addition, 5Me is more effectively taken up by both cancer and normal cells than TMPyP4. In addition, we have noticed that 5Me is more efficient than TMPyP4 in inhibiting the growth of the cancer cells after irradiation with light (600-720 nm, 20 J/cm2, 50 mW/cm2). By and large, these experimental results indicate that 5Me can be an efficient chemotherapeutic as well as a PDT agent.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN/química , G-Cuádruplex , Neoplasias/patología , Porfirinas/química , Porfirinas/farmacología , Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
8.
Biomater Sci ; 5(9): 1898-1909, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28715002

RESUMEN

The folate receptor (FR) is a well-validated and common target for cancer due to its high over-expression in many different cancer cells. Herein, we developed a new FR-targeting ligand (FA8) by conjugating folic acid and a cationic lipid. Owing to its favorable structural property FA8 as a ligand could be accommodated at an unusually higher molar ratio for a ligand-targeted liposome. We then encapsulated a drug-like molecule, bis-arylidene oxindole (NME2), in the targeted liposome. The resulting formulation induced potent caspase-8 up-regulation even in FR-moderately expressing melanoma cells. The NME2-associated non-targeted liposome (i.e., without FA8) or pristine NME2 could not up-regulate caspase-8. Caspase-8, an important apoptotic protein involved in the extrinsic pathway of apoptosis-signalling and inhibition of acquired drug resistance, was induced in cancer cells due to the combination treatment of liposomally associated FA8 and NME2 through the activation and subsequent cleavage of RIP-1. Consistently, in a melanoma tumor model too wherein FR is moderately expressed, significant tumour regression was obtained with this liposomal combination of FA8 and NME2. In conclusion, we demonstrate the development of a new FR-targeting ligand molecule whose higher level of inclusion (>10 mol%) in the liposomal formulation altered the mode of anticancer action of the encapsulated drug, thereby indicating a new therapeutic possibility involving FR targeted cancer treatment.


Asunto(s)
Ácido Fólico/administración & dosificación , Ácido Fólico/farmacología , Indoles/química , Liposomas/química , Melanoma Experimental/patología , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico , Caspasa 8/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Antineoplásicos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/metabolismo , Ácido Fólico/uso terapéutico , Humanos , Liposomas/farmacocinética , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Células 3T3 NIH , Oxindoles , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA