Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 730, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864973

RESUMEN

BACKGROUND: Antimicrobial resistance has surged due to widespread antimicrobial drug use, prompting interest in biosynthesizing nanoparticles from marine-derived actinomycetes extracellular metabolites, valued for their diverse bioactive compounds. This approach holds promise for addressing the urgent need for novel antimicrobial agents. The current study aimed to characterize novel bioactive compounds from unexplored biodiversity hotspots, halophilic Streptomyces sp. isolated from mangrove sediment in the Pichavaram region, India. METHODS AND RESULTS: Streptomyces rochei SSCM102 was conclusively identified through morphological and molecular characterization. Synthesis of silver nanoparticles (AgNPs) from Streptomyces rochei SSCM102 was characterized using various techniques, including UV-Vis, XRD, SEM, EDX, and FT-IR. The UV-Vis spectrum of the reduced AgNPs exhibited a prominent peak at 380 nm, confirming the AgNPs. The UV-Vis spectrum confirmed the synthesis of AgNP, and SEM analysis revealed a cubic morphology with sizes ranging from 11 to 21 nm. The FTIR spectrum demonstrated a shift in frequency widths between 626 cm-1 and 3432 cm-1. The EDX analysis substantiated the presence of metallic silver, evident from a strong band at 1.44 keV. The synthesized AgNPs exhibited antibacterial efficacy against human pathogens Escherichia coli (64 ± 0.32 µg/ml), Klebsiella pneumoniae (32 ± 0.16 µg/ml), and Pseudomonas aeruginosa (16 ± 0.08 µg/ml) by MIC and MBC values of 128 ± 0.64 (µg/ml), 64 ± 0.32 (µg/ml) and 32 ± 0.16 (µg/ml), respectively. Additionally, at a concentration of 400 µg/ml, the AgNPs displayed a 72% inhibition of DPPH radicals, indicating notable antioxidant capacity. The LC50 value of 130 µg/mL indicates that the green-synthesized AgNPs have lower toxicity by Brine Shrimp Larvae assay. CONCLUSION: The study's novel approach to synthesizing eco-friendly silver nanoparticles using Halophilic Streptomyces rochei SSCM102 contributes significantly to the field of biomedical research and drug development. By demonstrating potent antibacterial properties and aligning with sustainability goals, these nanoparticles offer promising avenues for novel antibacterial therapies.


Asunto(s)
Antibacterianos , Sedimentos Geológicos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Plata , Streptomyces , Streptomyces/metabolismo , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Sedimentos Geológicos/microbiología , Tecnología Química Verde/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , India , Bacterias/efectos de los fármacos
2.
Ageing Res Rev ; 99: 102393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925479

RESUMEN

Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Nanoestructuras , Curcumina/administración & dosificación , Curcumina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Animales , Polímeros , Nanopartículas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
3.
Int J Biol Macromol ; 274(Pt 1): 133332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914408

RESUMEN

Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.


Asunto(s)
Películas Comestibles , Embalaje de Alimentos , Almidón , Embalaje de Alimentos/métodos , Almidón/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Biopolímeros/química
4.
Cureus ; 16(3): e55605, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586722

RESUMEN

Introduction  Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.

6.
Cureus ; 16(2): e53810, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38465169

RESUMEN

Aim By using molecular docking analysis (MDA) to examine its interactions with important regulatory proteins linked to diabetes, such as glycogen synthase kinase 3 beta (GSK3ß), insulin receptor (IR), and glucose kinase (GCK), this study seeks to explore the therapeutic potential of myricetin, a naturally occurring flavonoid. Objective The main goal is to determine potential effects on insulin signalling, GSK3ß activity, and glucose metabolism by evaluating the binding affinities of myricetin with GCK, IR, and GSK3ß through MDA. In order to assess the drug affinity of myricetin, the study also intends to perform absorption, distribution, metabolism, and excretion (ADME) studies. Materials and methods To model the interaction between myricetin and the target proteins (GCK, IR, and GSK3ß), we used molecular docking analysis with computational tools. ADME studies were also included in the study to evaluate drug affinity. Identification of binding sites, essential residues, and interaction stability were all part of the structural analysis. Results As evidence of possible interactions with these regulatory proteins, myricetin showed positive binding affinities with GCK, IR, and GSK3ß. Strong interactions with important ligand recognition residues were seen in the docking into IR, indicating a potential impact on insulin signalling. Moreover, a strong binding affinity for GCK indicated potential effects on the metabolism of glucose. Studies using ADME confirmed the high drug affinity of myricetin. Conclusion This work sheds light on the multi-target potential of myricetin in the regulation of diabetes. It appears that it has the ability to influence glucose metabolism, suppress GSK3ß activity, and regulate insulin signalling based on its interactions with IR, GSK3ß, and GCK. Although these computational results show promise, more experimental work is necessary to confirm and fully understand the precise mechanisms that underlie myricetin's effects on the regulation of diabetes.

7.
Biology (Basel) ; 12(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979104

RESUMEN

Though there are several advancements and developments in cancer therapy, the treatment remains challenging. In recent years, the antimicrobial peptides (AMPs) from traditional herbs are focused for identifying and developing potential anticancer molecules. In this study, AMPs are identified from Sphaeranthus amaranthoides, a natural medicinal herb widely used as a crucial immune stimulant in Indian medicine. A total of 86 peptide traces were identified using liquid-chromatography-electrospray-ionisation mass spectrometry (LC-ESI-MS). Among them, three peptides were sequenced using the manual de novo sequencing technique. The in-silico prediction revealed that SA923 is a cyclic peptide with C-N terminal interaction of the carbon atom of ASP7 with the nitrogen atom of GLU1 (1ELVFYRD7). Thus, SA923 is presented under the orbitides class of peptides, which lack the disulfide bonds for cyclization. In addition, SA923, steered with the physicochemical properties and support vector machine (SVM) algorithm mentioned for the segment, has the highest in silico anticancer potential. Further, the in vitro cytotoxicity assay revealed the peptide has anti-proliferative activity, and toxicity studies were demonstrated in Danio rerio (zebrafish) embryos.

8.
Sci Rep ; 12(1): 19250, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357447

RESUMEN

Recent breakthroughs in the field of nanoparticle-based therapeutic delivery methods have changed the standpoint of cancer therapy by effectively delaying the process of disease development. Nanoparticles have a unique capacity of good penetrating ability than other therapeutic leads used in traditional therapeutics, and also, they have the highest impact on disease management. In the current study isolongifolene-loaded Chitosan nanoparticles have been formulated, synthesized and then characterized by the use of Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy. Further, the characterized chitosan nano formulation was evaluated for hemocompatibility, plasma stability, and in-vitro release. Isolongifolene-loaded chitosan nanoparticles were found to be compatible with plasma and also, they exhibited a constant release pattern. Hence, chitosan-loaded nanoparticles could be employed as an excellent adjuvant in cancer therapeutic, to combat the multi-drug resistance in solid tumors.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Quitosano/química , Nanopartículas/química , Microscopía Electrónica de Transmisión , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Tamaño de la Partícula , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico
9.
Sci Rep ; 10(1): 11898, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681120

RESUMEN

Marine pollution is a significant issue in recent decades, with the increase in industries and their waste harming the environment and ecosystems. Notably, the rise in shellfish industries contributes to tons of shellfish waste composed of up to 58% chitin. Chitin, the second most ample polymer next to cellulose, is insoluble and resistant to degradation. It requires chemical-based treatment or enzymatic hydrolysis to cleave the chitin polymers. The chemical-based treatment can lead to environmental pollution, so to solve this problem, enzymatic hydrolysis is the best option. Moreover, the resulting biopolymer by-products can be used to boost the fish immune system and also as drug delivery agents. Many marine microbial strains have chitinase producing ability. Nevertheless, we still lack an economical and highly stable chitinase enzyme for use in the industrial sector. So we isolate a novel marine bacterial strain Achromobacter xylosoxidans from the shrimp waste disposal site using chitin minimal medium. Placket-Burman and central composite design statistical models for culture condition optimisation predicted a 464.2 U/ml of chitinase production. The culture conditions were optimised for maximum chitinase production recording up to 467 U/ml. This chitinase from the A. xylosoxidans was 100% active at an optimum temperature of 45 °C (withstand up to 55 °C) and pH 8 with 80% stability. The HPLC analysis of chitinase degraded shellfish waste reveals a major amino acid profile composition-arginine, lysine, aspartic acid, alanine, threonine and low levels of isoleucine and methionine. These chitinase degraded products and by-products can be used as supplements in the aquaculture industry.


Asunto(s)
Achromobacter denitrificans/enzimología , Achromobacter denitrificans/aislamiento & purificación , Quitina/metabolismo , Quitinasas/biosíntesis , Crustáceos/microbiología , Eliminación de Residuos , Aminoácidos/análisis , Animales , Quitina/química , Quitinasas/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Filogenia , Temperatura
10.
Phytochemistry ; 167: 112078, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31450091

RESUMEN

Poor pancreatic cancer (PC) prognosis has been attributed to its resistance to apoptosis and propensity for early systemic dissemination. Existing therapeutic strategies are often circumvented by the molecular crosstalk between cell-signalling pathways. p53 is mutated in more than 50% of PC and NFκB is constitutively activated in therapy-resistant residual disease; these mutations and activations account for the avoidance of cell death and metastasis. Recently, we demonstrated the anti-PC potential of fucoidan extract from marine brown alga, Turbinaria conoides (J. Agardh) Kützing (Sargassaceae). In this study, we aimed to characterize the active fractions of fucoidan extract to identify their select anti-PC efficacy, and to define the mechanism(s) involved. Five fractions of fucoidan isolated by ion exchange chromatography were tested for their potential in genetically diverse human PC cell lines. All fractions exerted significant dose-dependent and time-dependent regulation of cell survival. Fucoidans induced apoptosis, activated caspase -3, -8 and -9, and cleaved Poly ADP ribose polymerase (PARP). Pathway-specific transcriptional analysis recognized inhibition of 57 and 38 nuclear factor κB (NFκB) pathway molecules with fucoidan-F5 in MiaPaCa-2 and Panc-1 cells, respectively. In addition, fucoidan-F5 inhibited both the constitutive and Tumor necrosis factor-α (TNFα)-mediated NFκB DNA-binding activity in PC cells. Upregulation of cytoplasmic IκB levels and significant reduction of NFκB-dependent luciferase activity further substantiate the inhibitory potential of seaweed fucoidans on NFκB. Moreover, fucoidan(s) treatment increased cellular p53 in PC cells and reverted NFκB forced-expression-related p53 reduction. The results suggest that fucoidan regulates PC progression and that fucoidans may target p53-NFκB crosstalk and dictate apoptosis in PC cells.


Asunto(s)
FN-kappa B/metabolismo , Neoplasias Pancreáticas/patología , Phaeophyceae/química , Polisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos
11.
Int J Biol Macromol ; 74: 447-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25541359

RESUMEN

The presence of occult metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutics for pancreatic cancer. Fucoidans from brown algae can be regarded as potential candidates in view of their antioxidant, anti-cancer and anti-angiogenic potential. Herein, we investigated the antioxidant and anti-cancer effects of fucoidans, sulfated polysaccharides from Turbinaria conoides (TCFE) in pancreatic cancer cell lines. TCFE exerted significant antioxidant activities against various free radicals. Significant inhibition of cell proliferation and, induction of apoptotic cell death were observed in pancreatic cancer cells in response to TCFE. Also, TCFE exhibited significant anti-angiogenic potential. Evidently, gelatin zymography revealed that TCFE inhibited matrix metalloproteases -2 and -9 activities in pancreatic cancer cells. These results clearly indicate that TCFE could serve as a potential 'deliverable' to alleviate pancreatic cancer progression by inhibiting tumor cell proliferation and angiogenesis.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Phaeophyceae/química , Polisacáridos/química , Polisacáridos/farmacología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Humanos , Neoplasias Pancreáticas , Polisacáridos/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...