Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(6): 924-937, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894926

RESUMEN

Serotonergic toxicity due to MAO enzyme inhibition is a significant concern when using linezolid to treat MDR-TB. To address this issue, we designed linezolid bioisosteres with a modified acetamidomethyl side chain at the C-5 position of the oxazolidine ring to balance activity and reduce toxicity. Among these bioisosteres, R7 emerged as a promising candidate, demonstrating greater effectiveness against M. tuberculosis (Mtb) H37Rv cells with an MIC of 2.01 µM compared to linezolid (MIC = 2.31 µM). Bioisostere R7 also exhibited remarkable activity (MIC50) against drug-resistant Mtb clinical isolates, with values of 0.14 µM (INHR, inhA+), 0.53 µM (INHR, katG+), 0.24 µM (RIFR, rpoB+), and 0.92 µM (INHR INHR, MDR). Importantly, it was >6.52 times less toxic as compared to the linezolid toward the MAO-A and >64 times toward the MAO-B enzyme, signifying a substantial improvement in its drug safety profile.

2.
Sci Rep ; 14(1): 12170, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806590

RESUMEN

Tuberculosis (TB) continues to be a global health crisis, necessitating urgent interventions to address drug resistance and improve treatment efficacy. In this study, we validate lumazine synthase (RibH), a vital enzyme in the riboflavin biosynthetic pathway, as a potential drug target against Mycobacterium tuberculosis (M. tb) using a CRISPRi-based conditional gene knockdown strategy. We employ a high-throughput molecular docking approach to screen ~ 600,000 compounds targeting RibH. Through in vitro screening of 55 shortlisted compounds, we discover 3 compounds that exhibit potent antimycobacterial activity. These compounds also reduce intracellular burden of M. tb during macrophage infection and prevent the resuscitation of the nutrient-starved persister bacteria. Moreover, these three compounds enhance the bactericidal effect of first-line anti-TB drugs, isoniazid and rifampicin. Corroborating with the in silico predicted high docking scores along with favourable ADME and toxicity profiles, all three compounds demonstrate binding affinity towards purified lumazine synthase enzyme in vitro, in addition these compounds exhibit riboflavin displacement in an in vitro assay with purified lumazine synthase indicative of specificity of these compounds to the active site. Further, treatment of M. tb with these compounds indicate reduced production of flavin adenine dinucleotide (FAD), the ultimate end product of the riboflavin biosynthetic pathway suggesting the action of these drugs on riboflavin biosynthesis. These compounds also show acceptable safety profile in mammalian cells, with a high selective index. Hence, our study validates RibH as an important drug target against M. tb and identifies potent antimycobacterial agents.


Asunto(s)
Antituberculosos , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Descubrimiento de Drogas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pruebas de Sensibilidad Microbiana , Animales
3.
Bioorg Med Chem Lett ; 108: 129800, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763480

RESUMEN

In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 µM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.


Asunto(s)
Antimaláricos , Antituberculosos , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Plasmodium falciparum , Quinazolinonas , Triazoles , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinazolinonas/química , Quinazolinonas/farmacología , Quinazolinonas/síntesis química , Ratones , Relación Estructura-Actividad , Animales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Células RAW 264.7
4.
Mol Divers ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789853

RESUMEN

A simple and effective three-component one-pot green methodology was employed for the synthesis of a new thiazolidine-2,4-dione based bisspirooxindolo-pyrrolidine derivatives using [Bmim]BF4 ionic liquid via [3 + 2] cycloaddition reaction. It is an environmentally benign, column chromatography-free, shorter reaction time, good yield and easy product isolation method. The synthesized compounds 10a-x, were thoroughly characterized by using various spectroscopic methods like FT-IR, 1H NMR, 13C NMR, Mass spectrometry and finally by single crystal X-ray diffraction method. In vitro anti-tubercular (anti-TB) activity studies were carried out on these synthesized compounds, and they showed good to moderate anti-TB activity against Mycobacterium tuberculosis H37Rv strain. The compound 10a exhibited good anti-TB activity, with an MIC (Minimum Inhibitory Concentration) value of 12.5 µg/mL, and the compounds 10m, 10o and 10r showed moderate activity with an MIC value of 25.0 µg/mL. Remaining compounds exhibited poor activity against Mycobacterium tuberculosis. Ethambutol, rifampicin and isoniazid were used as standard drugs. Furthermore, in silico molecular docking experiments on the TB protein (PDB ID: 1DF7) were carried out to understand the binding interactions, and they showed least binding energy values ranging from -8.9 to -7.2 kcal/mol.

5.
ACS Omega ; 9(8): 8846-8861, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434818

RESUMEN

The rational design of novel thiazolo[2,3-c][1,2,4]triazole derivatives was carried out based on previously identified antitubercular hit molecule H127 for discovering potent compounds showing antimicrobial activity. The designed compounds were screened for their binding efficacies against the antibacterial drug target enoyl-[acyl-carrier-protein] reductase, followed by prediction of drug-likeness and ADME properties. The designed analogues were chemically synthesized, characterized by spectroscopic techniques, followed by evaluation of antimicrobial activity against bacterial and fungal strains, as well as antitubercular activity against M. tuberculosis and M. bovis strains. Among the synthesized compounds, five compounds, 10, 11, 35, 37 and 38, revealed antimicrobial activity, albeit with differential potency against various microbial strains. Compounds 10 and 37 were the most active against S. mutans (MIC: 8 µg/mL), while compounds 11 and 37 showed the highest activity against B. subtillis (MIC: 16 µg/mL), whereas compounds 10, 11 and 37 displayed activities against E. coli (MIC: 16 µg/mL). Meanwhile, compounds 10 and 35 depicted activities against S. typhi (MIC: 16 µg/mL) and compound 10 showed antifungal activity against C. albicans (MIC: 32 µg/mL). The current study has identified two broad-spectrum antibacterial hit compounds (10 and 37). Further structural investigation on these molecules is underway to enhance their potency.

6.
J Biomol Struct Dyn ; : 1-19, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450660

RESUMEN

Mycobacteria regulate the synthesis of mycolic acid through the fatty acid synthase system type 1 (FAS I) and the fatty acid synthase system type-2 (FAS-II). Because mammalian cells exclusively utilize the FAS-I enzyme system for fatty acid production, targeting the FAS-II enzyme system could serve as a specific approach for developing selective antimycobacterial drugs. Enoyl-acyl carrier protein reductase enzyme (MtInhA), part of the FAS-II enzyme system, contains the NADH cofactor in its active site and reduces the intermediate. Molecular docking studies were performed on an in-house database (∼2200 compounds). For this study, five different crystal structures of MtInhA (PDB Code: 4TZK, 4BQP, 4D0S, 4BGE, 4BII) were used due to rotamer difference, mutation and the presence of cofactors. Molecular dynamics simulations (250 ns) were performed for the novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones derivatives selected by molecular docking studies. Twenty-three compounds selected by in silico methods were synthesized. Antitubercular activity and MtInhA enzyme inhibition studies were performed for compounds whose structures were elucidated by IR,1H-NMR,13C-NMR, HSQC, HMBC, MS and elemental analysis.Communicated by Ramaswamy H. Sarma.

7.
Drug Dev Res ; 85(1): e22153, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349258

RESUMEN

An innovative series of N-substituted piperazine-linked imidazothiazole derivatives 7(a-x) were synthesized, and their antitubercular effectiveness was evaluated. A three-step reaction sequence involving the condensation of 1,3-dichloroacetone and thiourea, coupling with substituted piperazines to give the intermediates 5(a-d) and cyclization with substituted α-bromoacetophenones produced the desired imidazothiazole derivatives 7(a-x) in excellent yields. In vitro screening of new derivatives against Mycobacterium tuberculosis H37Rv resulted in 7k (minimum inhibitory concentration [MIC]: 0.78 µg/mL) and 7g and 7h (MIC: 1.56 µg/mL) as potent hit compounds. Further, the docking studies of the promising compounds 7k, 7g, and 7h revealed that the best molecular interactions are with the DprE1 in complex with sulfonyl PBTZ of M. tuberculosis as the target protein (PDB ID: 6G83).


Asunto(s)
Mycobacterium tuberculosis , Piperazina/farmacología , Piperazinas/farmacología , Antituberculosos/farmacología , Tiazoles/farmacología
8.
Mol Divers ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261121

RESUMEN

The development of anti-tuberculosis (anti-TB) drugs has become a challenging task in medicinal chemistry. This is because Mycobacterium tuberculosis (TB), the pathogen that causes tuberculosis, has an increasing number of drug-resistant strains, and existing medication therapies are not very effective. This resistance significantly demands new anti-TB drug profiles. Here, we present the design and synthesis of a number of hybrid compounds with previously known anti-mycobacterial moieties attached to quinoxaline, quinoline, tetrazole, and 1,2,4-oxadiazole scaffolds. A convenient ultrasound methodology was employed to attain spiroquinoxaline-1,2,4-oxadiazoles via [3 + 2] cycloaddition of quinoxaline Schiff bases and aryl nitrile oxides at room temperature. This approach avoids standard heating and column chromatography while producing high yields and shorter reaction times. The target compounds 3a-p were well-characterized, and their in vitro anti-mycobacterial activity (anti-TB) was evaluated. Among the screened compounds, 3i displayed promising activity against the Mycobacterium tuberculosis cell line H37Rv, with an MIC99 value of 0.78 µg/mL. However, three compounds (3f, 3h, and 3o) exhibited potent activity with MIC99 values of 6.25 µg/mL. To further understand the binding interactions, the synthesized compounds were docked against the tuberculosis protein 5OEQ using in silico molecular docking. Moreover, the most active compounds were additionally tested for their cytotoxicity against the RAW 264.7 cell line, and the cytotoxicity of compounds 3f, 3h, 3i, and 3o was 27.3, 28.9, 26.4, and 30.2 µg/mL, respectively. These results revealed that the compounds 3f, 3h, 3i, and 3o were less harmful to humans. Furthermore, the synthesized compounds were tested for ADME qualities, and the results suggest that this series is useful for producing innovative and potent anti-tubercular medicines in the future.

9.
Bioorg Med Chem Lett ; 97: 129551, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979730

RESUMEN

A library of 1, 2, 3-triazole incorporated thiazolylcarboxylate derivatives (7a-q) and (8a-j) were synthesized and evaluated for their in-vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The two compounds 7h and 8h have displayed excellent antitubercular activity with MIC values of 3.12 and 1.56 µg/mL respectively (MIC values of standard drugs; Ciprofloxacin 1.56 µg/mL & Ethambutol 3.12 µg/mL). Whereas, the four compounds 7i, 7n, 7p and 8i displayed noticeable antitubercular activity with a MIC value of 6.25 µg/mL. The active compounds of the series were further studied for their cytotoxicity against RAW264.7 cell line using MTT assay. Furthermore, to study the probable mechanism of antitubercular action, physicochemical property profiling, DFT calculation and molecular docking study were executed on mycobacterial cell wall target Decaprenylphosphoryl-ß-d-ribose 2'-epimerase 1 (DprE1). Among all the compounds, 7h (-10 kcal/mol) and 8h (-10.1 kcal/mol) exerted the highest negative binding affinity against the targeted DprE1 (PDB: 4NCR) protein.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Triazoles/química , Pruebas de Sensibilidad Microbiana
10.
ACS Med Chem Lett ; 14(12): 1754-1759, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116435

RESUMEN

Serotogenic toxicity is a major hurdle associated with Linezolid in the treatment of drug-resistant tuberculosis (TB) due to the inhibition of monoamine oxidase (MAO) enzymes. Azole compounds demonstrate structural similarities to the recognized anti-TB drug Linezolid, making them intriguing candidates for repurposing. Therefore, we have repurposed azoles (Posaconazole, Itraconazole, Miconazole, and Clotrimazole) for the treatment of drug-resistant TB with the anticipation of their selectivity in sparing the MAO enzyme. The results of repurposing revealed that Clotrimazole showed equipotent activity against the Mycobacterium tuberculosis (Mtb) H37Rv strain compared to Linezolid, with a minimal inhibitory concentration (MIC) of 2.26 µM. Additionally, Clotrimazole exhibited reasonable MIC50 values of 0.17 µM, 1.72 µM, 1.53 µM, and 5.07 µM against the inhA promoter+, katG+, rpoB+, and MDR clinical Mtb isolates, respectively, compared to Linezolid. Clotrimazole also exhibited 3.90-fold less inhibition of MAO-A and 50.35-fold less inhibition of MAO-B compared to Linezolid, suggesting a reduced serotonergic toxicity burden.

11.
RSC Med Chem ; 14(12): 2714-2730, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38107181

RESUMEN

A new series inspired by combining fragments from nitazoxanide (NTZ) and 4-aminosalicylic acid (4-ASA) was synthesized and screened for in vitro antibacterial and antimycobacterial activities. The majority showed higher antibacterial potency than NTZ against all the screened strains, notably, 5f, 5j, 5n and 5o with MICs of 0.87-9.00 µM. Compounds 5c, 5n and 5o revealed higher potency than ciprofloxacin against K. pneumoniae, while 5i was equipotent. For E. faecalis, 3b, 5j, and 5k showed higher potency than ciprofloxacin. 5j was more potent against P. aeruginosa than ciprofloxacin, while 5n was more potent against S. aureus with an MIC of 0.87 µM. 5f showed equipotency to ciprofloxacin against H. pylori with an MIC of 1.74 µM. Compounds 3a and 3b (4-azidoNTZ, MIC 4.47 µM) are 2 and 5-fold more potent against Mycobacterium tuberculosis (Mtb H37Rv) than NTZ (MIC 20.23 µM) and safer. 4-Azidation and/or acetylation of NTZ improve both activities, while introducing 1,2,3-triazoles improves the antibacterial activity. Molecular docking studies within pyruvate ferredoxin oxidoreductase (PFOR), glucosamine-6-phosphate synthase (G6PS) and dihydrofolate reductase (DHFR) active sites were performed to explore the possible molecular mechanisms of actions. Acceptable drug-likeness properties were found. This study may shed light on further rational design of substituted NTZ as broad-spectrum more potent antimicrobial candidates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...