Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(8): 2147-2152, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39056190

RESUMEN

Precision medicine holds great promise for improving cancer outcomes. Yet, there are large inequities in the demographics of patients from whom genomic data and models, including patient-derived xenografts (PDX), are developed and for whom treatments are optimized. In this study, we developed a genetic ancestry pipeline for the Cancer Genomics Cloud, which we used to assess the diversity of models currently available in the National Cancer Institute-supported PDX Development and Trial Centers Research Network (PDXNet). We showed that there is an under-representation of models derived from patients of non-European ancestry, consistent with other cancer model resources. We discussed these findings in the context of disparities in cancer incidence and outcomes among demographic groups in the US, as well as power analyses for biomarker discovery, to highlight the immediate need for developing models from minority populations to address cancer health equity in precision medicine. Our analyses identified key priority disparity-associated cancer types for which new models should be developed. SIGNIFICANCE: Understanding whether and how tumor genetic factors drive differences in outcomes among U.S. minority groups is critical to addressing cancer health disparities. Our findings suggest that many additional models will be necessary to understand the genome-driven sources of these disparities.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Estados Unidos/epidemiología , Neoplasias/genética , Neoplasias/epidemiología , Animales , National Cancer Institute (U.S.) , Genómica/métodos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Artículo en Inglés | MEDLINE | ID: mdl-38857130

RESUMEN

This paper provides developments in statistical shape analysis of shape graphs, and demonstrates them using such complex objects as Retinal Blood Vessel (RBV) networks and neurons. The shape graphs are represented by sets of nodes and edges (articulated curves) connecting some nodes. The goals are to utilize nodes (locations, connectivity) and edges (edge weights and shapes) to: (1) characterize shapes, (2) quantify shape differences, and (3) model statistical variability. We develop a mathematical representation, elastic Riemannian metrics, and associated tools for shape graphs. Specifically, we derive tools for shape graph registration, geodesics, statistical summaries, shape modeling, and shape synthesis. Geodesics are convenient for visualizing optimal deformations, and PCA helps in dimension reduction and statistical modeling. One key challenge in comparing shape graphs with vastly different complexities (in number of nodes and edges). This paper introduces a novel multi-scale representation to handle this challenge. Using the notions of (1) "effective resistance" to cluster nodes and (2) elastic shape averaging of edge curves, it reduces graph complexity while retaining overall structures. This allows shape comparisons by bringing graphs to similar complexities. We demonstrate these ideas on 2D RBV networks from the STARE and DRIVE databases and 3D neurons from the NeuroMorpho database.

3.
Cell Rep Methods ; 4(5): 100759, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38626768

RESUMEN

We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.


Asunto(s)
Xenoinjertos , Humanos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Eosina Amarillenta-(YS) , Hematoxilina , Transcriptoma , Procesamiento de Imagen Asistido por Computador/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Ther ; 23(7): 924-938, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38641411

RESUMEN

Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.


Asunto(s)
Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Neoplasias/patología , Neoplasias/tratamiento farmacológico , National Cancer Institute (U.S.) , Estados Unidos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Consenso
5.
Genome Res ; 34(1): 145-159, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38290977

RESUMEN

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Filogenia , Genotipo , Ratones Endogámicos , Fenotipo , Mutación , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...