Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 777, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164687

RESUMEN

Cathepsin C (CTSC) is a lysosomal cysteine protease constitutively expressed at high levels in the lung, kidney, liver, and spleen. It plays a key role in the activation of serine proteases in cytotoxic T cells, natural killer cells (granzymes A and B), mast cells (chymase and tryptase) and neutrophils (cathepsin G, neutrophil elastase, proteinase 3) underscoring its pivotal significance in immune and inflammatory defenses. Here, we comprehensively review the structural attributes, synthesis, and function of CTSC, with a focus on its variants implicated in the etiopathology of several syndromes associated with neutrophil serine proteases, including Papillon-Lefevre syndrome (PLS), Haim-Munk Syndrome (HMS), and aggressive periodontitis (AP). These syndromes are characterized by palmoplantar hyperkeratosis, and early-onset periodontitis (severe gum disease) resulting in premature tooth loss. Due to the critical role played by CTSC in these and several other conditions it is being explored as a potential therapeutic target for autoimmune and inflammatory disorders. The review also discusses in depth the gene variants of CTSC, and in particular their postulated association with chronic obstructive pulmonary disease (COPD), COVID-19, various cancers, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, sudden cardiac death (SCD), atherosclerotic vascular disease, and neuroinflammatory disease. Finally, the therapeutic potential of CTSC across a range of human diseases is discussed.


Asunto(s)
COVID-19 , Catepsina C , Humanos , Catepsina C/metabolismo , Catepsina C/genética , Animales , Enfermedad de Papillon-Lefevre/genética , SARS-CoV-2 , Salud
2.
Sci Rep ; 14(1): 18372, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112609

RESUMEN

The relationship between dental fluorosis and alterations in the salivary proteome remains inadequately elucidated. This study aimed to investigate the salivary proteome and fluoride concentrations in urine and drinking water among Thai individuals afflicted with severe dental fluorosis. Thirty-seven Thai schoolchildren, aged 6-16, were stratified based on Thylstrup and Fejerskov fluorosis index scores: 10 with scores ranging from 5 to 9 (SF) and 27 with a score of 0 (NF). Urinary and water fluoride levels were determined using an ion-selective fluoride electrode. Salivary proteomic profiling was conducted via LC-MS/MS, followed by comprehensive bioinformatic analysis. Results revealed significantly elevated urinary fluoride levels in the SF group (p = 0.007), whereas water fluoride levels did not significantly differ between the two cohorts. Both groups exhibited 104 detectable salivary proteins. The NF group demonstrated notable upregulation of LENG9, whereas the SF group displayed upregulation of LDHA, UBA1, S100A9, H4C3, and LCP1, all associated with the CFTR ion channel. Moreover, the NF group uniquely expressed 36 proteins, and Gene Ontology and pathway analyses suggested a link with various aspects of immune defense. In summary, the study hypothesized that the CFTR ion channel might play a predominant role in severe fluorosis and highlighted the depletion of immune-related salivary proteins, suggesting compromised immune defense in severe fluorosis. The utility of urinary fluoride might be a reliable indicator for assessing excessive fluoride exposure.


Asunto(s)
Fluoruros , Fluorosis Dental , Proteómica , Saliva , Fluorosis Dental/metabolismo , Humanos , Niño , Masculino , Saliva/metabolismo , Saliva/química , Femenino , Fluoruros/orina , Fluoruros/análisis , Adolescente , Proteómica/métodos , Proteoma/análisis , Tailandia , Proteínas y Péptidos Salivales/metabolismo , Proteínas y Péptidos Salivales/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Espectrometría de Masas en Tándem , Agua Potable
3.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477421

RESUMEN

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Asunto(s)
Amelogénesis Imperfecta , Diferenciación Celular , Proteínas del Esmalte Dental , Pulpa Dental , Nefrocalcinosis , Osteogénesis , Diente Primario , Humanos , Células Cultivadas , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Expresión Génica , Mutación , Osteogénesis/genética
4.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650945

RESUMEN

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Asunto(s)
Amelogénesis Imperfecta , Proteínas del Esmalte Dental , Humanos , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Mutación , Proteínas del Esmalte Dental/genética , Fósforo , Minerales , Carbono
6.
BDJ Open ; 9(1): 15, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041139

RESUMEN

OBJECTIVES: To characterize phenotype and genotype of amelogenesis imperfecta (AI) in a Thai patient, and review of literature. MATERIALS AND METHODS: Variants were identified using trio-exome and Sanger sequencing. The ITGB6 protein level in patient's gingival cells was measured. The patient's deciduous first molar was investigated for surface roughness, mineral density, microhardness, mineral composition, and ultrastructure. RESULTS: The patient exhibited hypoplastic-hypomineralized AI, taurodontism, and periodontal inflammation. Exome sequencing identified the novel compound heterozygous ITGB6 mutation, a nonsense c.625 G > T, p.(Gly209*) inherited from mother and a splicing c.1661-3 C > G from father, indicating AI type IH. The ITGB6 level in patient cells was significantly reduced, compared with controls. Analyses of a patient's tooth showed a significant increase in roughness while mineral density of enamel and microhardness of enamel and dentin were significantly reduced. In dentin, carbon was significantly decreased while calcium, phosphorus, and oxygen levels were significantly increased. Severely collapsed enamel rods and a gap in dentinoenamel junction were observed. Of six affected families and eight ITGB6 variants that have been reported, our patient was the only one with taurodontism. CONCLUSION: We report the hypoplasia/hypomineralization/taurodontism AI patient with disturbed tooth characteristics associated with the novel ITGB6 variants and reduced ITGB6 expression, expanding genotype, phenotype, and understanding of autosomal recessive AI.

7.
Oral Dis ; 28(3): 734-744, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33486840

RESUMEN

OBJECTIVES: Autosomal-dominant hypocalcified amelogenesis imperfecta (ADHCAI) shows phenotypic heterogeneity. Our aim was to characterise the ADHCAI phenotypes, tooth properties and genotypes. METHODS: Three unrelated ADHCAI probands and seven additional affected members of the three families were recruited. Mutations were identified by exome and Sanger sequencing, and haplotypes by SNP array. Tooth colour, roughness, density, nanohardness, minerals and ultrastructure were investigated. RESULTS: Ten participants were heterozygous for the FAM83H mutation c.1387C>T (p.Gln463*). All shared a 3.43 Mbp region on chromosome 8q24.3 encompassing the FAM83H variant, indicating a common ancestry. The c.1387C>T was estimated to be 23.8 generations or 600 years. The FAM83H enamel had higher roughness and lower lightness, density, nanohardness, and calcium and phosphorus levels than controls. Blunted enamel rods, wide interrod spaces and disorganised dentinoenamel junctions were observed. Evaluating the patients with the same mutation and reviewing others with different mutations in FAM83H revealed that the FAM83H heterogeneous phenotypes are age-influenced. Tooth colour and surface texture change with ageing. CONCLUSIONS: FAM83H enamel demonstrated decreased lightness, density, hardness, calcium, phosphorus and defective ultrastructure. We have identified that the phenotypic variation in FAM83H-associated ADHCAI is age-related. Awareness of the correlation between age and clinical features of FAM83H-ADHCAI can help dentists make an accurate diagnosis.


Asunto(s)
Amelogénesis Imperfecta , Amelogénesis Imperfecta/genética , Codón sin Sentido , Humanos , Fenotipo , Proteínas/genética
8.
Cell Prolif ; 54(11): e13132, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34580954

RESUMEN

BACKGROUND: Patients with ELANE variants and severe congenital neutropenia (SCN) commonly develop oral complications. Whether they are caused only by low neutrophil count or the combination of neutropenia and aberrant dental cells is unknown. METHODS: Genetic variant was identified with exome sequencing. Dental pulp cells isolated from the SCN patient with an ELANE mutation were investigated for gene expression, enzyme activity, proliferation, colony formation, wound healing, apoptosis, ROS, attachment, spreading and response to lipopolysaccharide. RESULTS: ELANE cells had diminished expression of ELANE and SLPI and reduced neutrophil elastase activity. Moreover, ELANE cells exhibited impaired proliferation, colony forming, migration, attachment and spreading; and significantly increased ROS formation and apoptosis, corresponding with increased Cyclin D1 and MMP2 levels. The intrinsic levels of TGF-ß1 and TNF-α were significantly increased; however, IL-6, IL-8 and NF-kB1 were significantly decreased in ELANE cells compared with those in controls. After exposure to lipopolysaccharide, ELANE cells grew larger, progressed to more advanced cell spreading stages and showed significantly increased SLPI, TNF-α and NF-kB1 and tremendously increased IL-6 and IL-8 expression, compared with controls. CONCLUSION: This study, for the first time, suggests that in addition to neutropenia, the aberrant levels and functions of ELANE, SLPI and their downstream molecules in pulp cells play an important role in oral complications in SCN patients. In addition, pulp cells with diminished neutrophil elastase and SLPI are highly responsive to inflammation.


Asunto(s)
Pulpa Dental/metabolismo , Elastasa de Leucocito/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Humanos , Elastasa de Leucocito/genética , Mutación/genética , Neutropenia/congénito , Neutropenia/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/genética
9.
Am J Med Genet A ; 185(10): 3068-3073, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34037307

RESUMEN

PYCR2 pathogenic variants lead to an autosomal recessive hypomyelinating leukodystrophy 10 (HLD10), characterized by global developmental delay, microcephaly, facial dysmorphism, movement disorder, and hypomyelination. This study identified the first two unrelated Thai patients with HLD10. Patient 1 harbored the novel compound heterozygous variants, c.257T>G (p.Val86Gly) and c.400G>A (p.Val134Met), whereas patient 2 possessed the homozygous variant, c.400G>A (p.Val134Met), in PYCR2. Haplotype analysis revealed that the two families' members shared a 2.3 Mb region covering the c.400G>A variant, indicating a common ancestry. The variant was estimated to age 1450 years ago. Since the c.400G>A was detected in three out of four mutant alleles and with a common ancestry, this variant might be common in Thai patients. We also reviewed the phenotype and genotype of all 35 previously reported PYCR2 patients and found that majorities of cases were homozygous with a consanguineous family history, except patient 1 and another reported case who were compound heterozygous. All patients had microcephaly and developmental delay. Hypotonia and peripheral spasticity were common. Hypomyelination or delayed myelination was a typical radiographic feature. Here, we report the first two Thai patients with HLD10 with the novel PYCR2 variants expanding the genotypic spectrum and suggest that the c.400G>A might be a common mutation in Thai patients.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Discapacidades del Desarrollo/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Microcefalia/genética , Enfermedades Mitocondriales/genética , Trastornos del Movimiento/genética , Trastornos Psicomotores/genética , Pirrolina Carboxilato Reductasas/genética , Adolescente , Alelos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiportadores/genética , Niño , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/patología , Femenino , Genotipo , Haplotipos/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/complicaciones , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Homocigoto , Humanos , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Trastornos del Movimiento/complicaciones , Trastornos del Movimiento/patología , Mutación , Linaje , Fenotipo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/patología , Adulto Joven
10.
Int J Neonatal Screen ; 7(1)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562887

RESUMEN

A variant in the POLG gene is the leading cause of a heterogeneous group of mitochondrial disorders. No definitive treatment is currently available. Prenatal and newborn screening have the potential to improve clinical outcome of patients affected with POLG-related disorders. We reported a 4-month-old infant who presented with developmental delay, fever, and diarrhea. Within two weeks after hospital admission, the patient developed hepatic failure and died. Liver necropsy demonstrated an extensive loss of hepatocytes and bile duct proliferations. Trio-whole exome sequencing identified that the patient was compound heterozygous for a novel frameshift variant c.3102delG (p.Lys1035Serfs*59) and a common variant c.3286C>T (p.Arg1096Cys) in POLG (NM_002693.3) inherited from the mother and father, respectively. The c.3102delG (p.Lys1035Serfs*59) was a null variant and classified as pathogenic according to the American College of Medical Genetics and Genomics Standards and Guidelines. Prenatal genetic screenings using rapid whole exome sequencing successfully detected the heterozygous c.3286C>T variant in the following pregnancy and the normal alleles in the other one. Both children had been healthy. We reviewed all 34 cases identified with the POLG c.3286C>T variant and found that all 15 compound heterozygous cases had two missense variants except our patient who had the truncating variant and showed the earliest disease onset, rapid deterioration, and the youngest death. All homozygous cases had disease onset before age 2 and developed seizure. Here, we report a novel POLG variant expanding the genotypic spectrum, demonstrate the successful use of exome sequencing for prenatal and neonatal screenings of POLG-related disorders, and show the genotype-phenotype correlation of the common c.3286C>T variant.

11.
Front Physiol ; 11: 573214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329022

RESUMEN

Tooth agenesis is one of the most common orodental anomalies that demonstrate phenotypic and genotypic heterogeneity with a prevalence of 2.5%-7%. Mutations in WNT10A have been proposed to be the most common cause of nonsyndromic tooth agenesis (NSTA). The aim of this study was to characterize the dental features and genetic variants of NSTA in a Thai population. We recruited 13 unrelated patients with NSTA who attended the Faculty of Dentistry, Chulalongkorn University, Thailand, from 2017 to 2019. All 13 underwent whole exome sequencing that identified likely pathogenic genetic variants, all in WNT10A, in five patients. All five patients had second premolar agenesis, while three also had absent or peg-shaped upper lateral incisors. Patient 1 possessed a novel heterozygous duplication, c.916_918dupAAC (p.Asn306dup) in WNT10A. Patients 2 and 3 harbored a heterozygous and homozygous c.637G > A (p.Gly213Ser) in WNT10A, respectively. Patients 4 possessed a heterozygous c.511C > T (p.Arg171Cys) in WNT10A. Patient 5 harbored a homozygous c.511C > T (p.Arg171Cys) in WNT10A and a novel heterozygous c.413A > T (p.Asn138Ile) in EDARADD, suggesting digenic inheritance. We recruited another 18 family members of these five patients. Out of 23 participants, homozygous WNT10A variants were identified in 2 patients and heterozygous variants in 17 individuals. Both homozygous patients had NSTA. Eight out of 17 heterozygous individuals (8/17) had NSTA or a peg-shaped lateral incisor, indicating a 47% penetrance of the heterozygous variants or 53% (10/19) penetrance of either homozygous or heterozygous variants in WNT10A. The frequencies of the c.511C > T in our in-house 1,876 Thai exome database, Asian populations, and non-Asian populations were 0.016, 0.005-0.033, and 0.001, respectively; while those of the c.637G > A were 0.016, 0.004-0.029, and 0.000, respectively. In conclusion, our study reports two novel variants with one each in WNT10A and EDARADD, expanding the genotypic spectra of NSTA. Second premolar agenesis is a common phenotype in affected individuals with variants in WNT10A; however, its penetrance is incomplete. Lastly, the different frequencies of WNT10A variants, c.511C > T and c.637G > A, in diverse populations might contribute to the prevalence range of NSTA between continents.

12.
Toxicol Sci ; 160(1): 173-179, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973694

RESUMEN

Pregnancy is a complex physiological state, in which the metabolism of endogenous as well as exogenous agents is ostensibly altered. One exogenous agent of concern is the hepatocarcinogen aflatoxin B1 (AFB1), a foodborne fungal toxin, that requires phase I metabolic oxidation for conversion to its toxic and carcinogenic form, the AFB1-8,9-exo-epoxide. The epoxide interacts with cellular targets causing toxicity and cell death; these targets include the covalent modification of DNA leading to mutations that can initiate malignant transformation. The main detoxification pathway of the AFB1-epoxide involves phase II metabolic enzymes including the glutathione-S-transferase (GST) family. Pregnancy can modulate both phase I and II metabolism and alter the biological potency of AFB1. The present work investigated the impact of pregnancy on AFB1 exposure in mice. A single IP dose of 6 mg/kg AFB1 was administered to pregnant C57BL/6 J mice at gestation day 14 and matched non-pregnant controls. Pregnant mice accumulated 2-fold higher AFB1-N7-guanine DNA adducts in the liver when compared with nonpregnant controls 6 h post-exposure. Enhanced DNA adduct formation in pregnant animals paralleled elevated hepatic protein expression of mouse CYP1A2 and mouse homologs of human CYP3A4, phase I enzymes capable of bioactivating AFB1. Although phase II enzymes GSTA1/2 showed decreased protein expression, GSTA3, the primary enzymatic protection against the AFB1-epoxide, was unaffected at the protein level. Taken together, our results reveal that pregnancy may constitute a critical window of susceptibility for maternal health, and provide insight into the biochemical factors that could explain the underlying risks.


Asunto(s)
Aflatoxina B1/análogos & derivados , Carcinógenos/toxicidad , Daño del ADN , Guanina/análogos & derivados , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Activación Metabólica , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Animales , Carcinógenos/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Aductos de ADN/metabolismo , Femenino , Edad Gestacional , Glutatión Transferasa/metabolismo , Guanina/metabolismo , Guanina/toxicidad , Hepatocitos/metabolismo , Isoenzimas/metabolismo , Hígado/metabolismo , Exposición Materna , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...