Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 46(9): 1231-1239, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357386

RESUMEN

Personal protective equipment (PPE), including medical masks, should be worn for preventing the transmission of respiratory pathogens via infective droplets and aerosols. In medical masks, the key layer is the filter layer, and the melt-blown nonwoven fabric (NWF) is the most used fabric. However, the NWF filter layer cannot kill or inactivate the pathogens spread via droplets and aerosols. Povidone-iodine (PVP-I) has been used as an antiseptic solution given its potent broad-spectrum activity against pathogens. To develop PPE (e.g., medical masks) with anti-pathogenic activity, we integrated PVP-I into nylon-66 NWF. We then evaluated its antiviral activity against influenza A viruses by examining the viability of Madin-Darby canine kidney (MDCK) cells after inoculation with the virus strains exposed to the PVP-I-integrated nylon-66 NWF. The PVP-I nylon-66 NWF protected the MDCK cells from viral infection in a PVP-I concentration-dependent manner. Subsequently, we found to integrate PVP-I into nylon-66 and polyurethane materials among various materials. These PVP-I materials were also effective against influenza virus infection, and treatment with PVP-I nylon-66 NWF showed the highest cell survival among all the tested materials. PVP-I showed anti-influenza A virus activity when used in conjunction with PPE materials. Moreover, nylon-66 NWF integrated with PVP-I was found to be the best material to ensure anti-influenza activity. Therefore, PVP-I-integrated masks could have the potential to inhibit respiratory virus infection. Our results provide new information for developing multi-functional PPEs with anti-viral activity by integrating them with PVP-I to prevent the potential transmission of respiratory viruses.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Animales , Perros , Humanos , Povidona Yodada/farmacología , Povidona Yodada/uso terapéutico , Nylons , Aerosoles y Gotitas Respiratorias , Gripe Humana/prevención & control
2.
Methods Mol Biol ; 2556: 205-242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175637

RESUMEN

The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Epitelio , Hemaglutininas Virales , Humanos , Lectinas Tipo C , Macrófagos , Mucinas , Neuraminidasa , Polisacáridos
3.
Methods Mol Biol ; 2556: 243-271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175638

RESUMEN

Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Esterasas , Hemaglutininas , Humanos , Polisacáridos , SARS-CoV-2
4.
Methods Mol Biol ; 2556: 303-320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175641

RESUMEN

Methods to synthesize influenza virus inhibitors with fluoro, phosphono, and/or sulfo functional groups are described. The resulting sialic acid analogues are produced from the natural substrate N-acetylneuraminic acid as starting material. Fluorescent assay methods for inhibition of influenza neuraminidase and virus proliferation are also provided.


Asunto(s)
Gripe Humana , Ácido N-Acetilneuramínico , Colorantes , Humanos , Gripe Humana/tratamiento farmacológico , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa
5.
Methods Mol Biol ; 2556: 321-353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175642

RESUMEN

Depending on the strain, influenza A virus causes animal, zoonotic, pandemic, or seasonal influenza with varying degrees of severity. Two surface glycoprotein spikes, hemagglutinin (HA) and neuraminidase (NA), are the most important influenza A virus antigens. NA plays an important role in the propagation of influenza virus by removing terminal sialic acid from sialyl decoy receptors and thereby facilitating the release of viruses from traps such as in mucus and on infected cells. Some NA inhibitors have become widely used drugs for treatment of influenza. However, attempts to develop effective and safe NA inhibitors that can be used for treatment of anti-NA drugs-resistant influenza viruses have continued. In this chapter, we describe the following updates on influenza A NA inhibitor development: (i) N-acetylneuraminic acid (Neu5Ac)-based derivatives, (ii) covalent NA inhibitors, (iii) sulfo-sialic acid analogs, (iv) N-acetyl-6-sulfo-ß-D-glucosaminide-based inhibitors, (v) inhibitors targeting the 150-loop of group 1 NAs, (vi) conjugation inhibitors, (vii) acylhydrazone derivatives, (viii) monoclonal antibodies, (ix) PVP-I, and (x) natural products. Finally, we provide future perspectives on the next-generation anti-NA drugs.


Asunto(s)
Productos Biológicos , Virus de la Influenza A , Gripe Humana , Animales , Anticuerpos Monoclonales , Antivirales/farmacología , Hemaglutininas , Humanos , Ácido N-Acetilneuramínico , Neuraminidasa , Povidona Yodada
6.
PLoS Pathog ; 18(6): e1010590, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35700214

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV. SARS-CoV-2 infection was significantly inhibited by α2-6-linked sialic acid-containing compounds, but not by α2-3 analog, in VeroE6/TMPRSS2 cells. The α2-6-linked compound bound to SARS-CoV-2 spike S1 subunit to competitively inhibit SARS-CoV-2 attachment to cells. Enzymatic removal of cell surface sialic acids impaired the interaction between SARS-CoV-2 spike and angiotensin-converting enzyme 2 (ACE2), and suppressed the efficient spread of SARS-CoV-2 infection over time, in contrast to its least effect on SARS-CoV spread. Our study provides a novel molecular basis of SARS-CoV-2 infection which illustrates the distinctive characteristics from SARS-CoV.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Peptidil-Dipeptidasa A/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Vaccines (Basel) ; 8(4)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036202

RESUMEN

Among the four genera of influenza viruses (IVs) and the four genera of coronaviruses (CoVs), zoonotic αIV and ßCoV have occasionally caused airborne epidemic outbreaks in humans, who are immunologically naïve, and the outbreaks have resulted in high fatality rates as well as social and economic disruption and losses. The most devasting influenza A virus (IAV) in αIV, pandemic H1N1 in 1918, which caused at least 40 million deaths from about 500 million cases of infection, was the first recorded emergence of IAVs in humans. Usually, a novel human-adapted virus replaces the preexisting human-adapted virus. Interestingly, two IAV subtypes, A/H3N2/1968 and A/H1N1/2009 variants, and two lineages of influenza B viruses (IBV) in ßIV, B/Yamagata and B/Victoria lineage-like viruses, remain seasonally detectable in humans. Both influenza C viruses (ICVs) in γIV and four human CoVs, HCoV-229E and HCoV-NL63 in αCoV and HCoV-OC43 and HCoV-HKU1 in ßCoV, usually cause mild respiratory infections. Much attention has been given to CoVs since the global epidemic outbreaks of ßSARS-CoV in 2002-2004 and ßMERS-CoV from 2012 to present. ßSARS-CoV-2, which is causing the ongoing COVID-19 pandemic that has resulted in 890,392 deaths from about 27 million cases of infection as of 8 September 2020, has provoked worldwide investigations of CoVs. With the aim of developing efficient strategies for controlling virus outbreaks and recurrences of seasonal virus variants, here we overview the structures, diversities, host ranges and host receptors of all IVs and CoVs and critically review current knowledge of receptor binding specificity of spike glycoproteins, which mediates infection, of IVs and of zoonotic, pandemic and seasonal CoVs.

8.
Methods Mol Biol ; 2132: C1, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32990934

RESUMEN

The inadvertently published below contents have been corrected.

9.
J Virol ; 94(18)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32641475

RESUMEN

Some avian influenza (AI) viruses have a deletion of up to 20 to 30 amino acids in their neuraminidase (NA) stalk. This has been associated with changes in virus replication and host range. Currently prevalent H9N2 AI viruses have only a 2- or 3-amino-acid deletion, and such deletions were detected in G1 and Y280 lineage viruses, respectively. The effect of an NA deletion on the H9N2 phenotype has not been fully elucidated. In this study, we isolated G1 mutants that carried an 8-amino-acid deletion in their NA stalk. To systematically analyze the effect of NA stalk length and concomitant (de)glycosylation on G1 replication and host range, we generated G1 viruses that had various NA stalk lengths and that were either glycosylated or not glycosylated. The stalk length was correlated with NA sialidase activity, using low-molecular-weight substrates, and with virus elution efficacy from erythrocytes. G1 virus replication in avian cells and eggs was positively correlated with the NA stalk length but was negatively correlated in human cells and mice. NA stalk length modulated G1 virus entry into host cells, with shorter stalks enabling more efficient G1 entry into human cells. However, with a hemagglutinin (HA) with a higher α2,6-linked sialylglycan affinity, the effect of NA stalk length on G1 virus infection was reversed, with shorter NA stalks reducing virus entry into human cells. These results indicate that a balance between HA binding affinity and NA sialidase activity, modulated by NA stalk length, is required for optimal G1 virus entry into human airway cells.IMPORTANCE H9N2 avian influenza (AI) virus, one of the most prevalent AI viruses, has caused repeated poultry and human infections, posing a huge public health risk. The H9N2 virus has diversified into multiple lineages, with the G1 lineage being the most prevalent worldwide. In this study, we isolated G1 variants carrying an 8-amino-acid deletion in their NA stalk, which is, to our knowledge, the longest deletion found in H9N2 viruses in the field. The NA stalk length was found to modulate G1 virus entry into host cells, with the effects being species specific and dependent on the corresponding HA binding affinity. Our results suggest that, in nature, H9N2 G1 viruses balance their HA and NA functions by the NA stalk length, leading to the possible association of host range and virulence in poultry and mammals during the evolution of G1 lineage viruses.


Asunto(s)
Regulación Viral de la Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/virología , Secuencia de Aminoácidos , Animales , Pollos , Genotipo , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Hemaglutininas , Especificidad del Huésped , Interacciones Huésped-Patógeno/genética , Humanos , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Aviar/patología , Ratones , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Fenotipo , Filogenia , Receptores Virales , Eliminación de Secuencia , Relación Estructura-Actividad , Virulencia , Internalización del Virus , Replicación Viral
10.
Methods Mol Biol ; 2132: 547-565, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32306356

RESUMEN

Infections by H1-H16 influenza A viruses require sufficient binding of viral hemagglutinins (HAs) to specific target receptors, glycoconjugates bearing sialyl sugar chains, on the host cell surface. Synthesized sialyl sugar chains targeting sialyl sugar-binding sites in HAs that are immutable as long as the virus does not switch to a different host species might therefore be highly effective candidate drugs for inhibition of the initial required step of virus entry. In this chapter, we describe the following aspects of updated sialyl sugar chains as influenza A virus HA inhibitors (HAIs): (1) mode of terminal sialyl-galactose linkage, (2) molecular length and structure of sialyl glycan receptors, (3) multivalent sialyl sugar chain dimension, (4) clustering of sialyl sugar chains on macromolecular scaffolds, and (5) enhancement of the stability of sialyl sugar chain HA inhibitors. We also discuss about the use of HAI-based combinations that should be considered for future influenza therapy.


Asunto(s)
Antivirales/síntesis química , Glicoconjugados/metabolismo , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/fisiología , Antivirales/química , Antivirales/farmacología , Sitios de Unión/efectos de los fármacos , Desarrollo de Medicamentos , Quimioterapia Combinada , Glicoconjugados/química , Hemaglutininas Virales/química , Humanos , Virus de la Influenza A/efectos de los fármacos , Ácido N-Acetilneuramínico/química , Unión Proteica/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...