Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 22455, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575239

RESUMEN

We investigate assisted enhancement of quantum coherence in a bipartite setting with control and target systems, which converts the coherence of the control qubit into the enhanced coherence of the target qubit. We assume that only incoherent operations and measurements can be applied locally and classical information can be exchanged. In addition, the two subsystems are also coupled by a fixed Hamiltonian whose interaction strength can be controlled. This coupling does not generate any local coherence from incoherent input states. We show that in this setting a measurement and feed-forward based protocol can deterministically enhance the coherence of the target system while fully preserving its purity. The protocol can be iterated and several copies of the control state can be consumed to drive the target system arbitrarily close to a maximally coherent state. We experimentally demonstrate this protocol with a photonic setup and observe the enhancement of coherence for up to five iterations of the protocol.

2.
Opt Express ; 29(21): 33037-33052, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809123

RESUMEN

Generation of particular polarization states of light, encoding information in polarization degree of freedom, and efficient measurement of unknown polarization are the key tasks in optical metrology, optical communications, polarization-sensitive imaging, and photonic information processing. Liquid crystal devices have proved to be indispensable for these tasks, though their limited precision and the requirement of a custom design impose a limit of practical applicability. Here we report fast preparation and detection of polarization states with unprecedented accuracy using liquid-crystal cells extracted from common twisted nematic liquid-crystal displays. To verify the performance of the device we use it to prepare dozens of polarization states with average fidelity 0.999(1) and average angle deviation 0.5(3) deg. Using four-projection minimum tomography as well as six-projection Pauli measurement, we measure polarization states employing the reported device with the average fidelity of 0.999(1). Polarization measurement data are processed by the maximum likelihood method to reach a valid estimate of the polarization state. In addition to the application in classical polarimetry, we also employ the reported liquid-crystal device for full tomographic characterization of a three-mode Greenberger-Horne-Zeilinger entangled state produced by a photonic quantum processor.

3.
Opt Express ; 28(23): 34639-34655, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182927

RESUMEN

Weak value amplification is a popular method in quantum metrology for enhancing the sensitivity at the expense of the signal intensity. Recently, it was suggested that the trade-off between signal intensity and sensitivity can be improved by using an entangled auxiliary system. Here, we experimentally investigate such entanglement-assisted weak measurement of small conditional phase shifts induced by an interaction between ancilla and meter qubits. We utilize entangled photon pairs and implement the required three-qubit quantum logic circuit with linear optics. The circuit comprises a two-qubit controlled phase gate and a three-qubit controlled-controlled phase gate with fully tunable conditional phase shifts. We fully characterize the output states of our circuit by quantum state tomography and perform a comprehensive analysis of the trade-off between the measurement sensitivity and the success probability of the protocol. The observed experimental results are in good qualitative agreement with theoretical predictions, but the overall performance of our setup is limited by various experimental imperfections. We provide a detailed theoretical analysis of the influence of dephasing of the entangled ancilla state, which is one of the main sources of imperfections in the experiment. We also discuss the ultimate scaling with the dimension of the entangled ancilla system.

4.
Opt Express ; 26(7): 8443-8452, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715811

RESUMEN

Hyper-encoding enables storing several qubits in a single photon using its different degrees of freedom like polarization and spatial ones. This approach enables feasible implementation of multi-qubit operations. One of the basic manipulations of two or more qubits is to swap their quantum state. Here we report on feasible and stable experimental implementation of a deterministic single photon two-qubit SWAP gate that interchanges path and polarization qubits. We discuss the principle of its operation and give detailed information about experimental demonstration employing two Mach-Zehnder interferometers with one common arm. The gate characterization is done by full quantum process tomography using photons produced by heralded single-photon source. The achieved quantum process fidelity reached more than 0.94 with an effective phase uncertainty of the whole setup, evaluated by means of Allan deviation, below 2.5 deg for 2.5 h without any active stabilization. Our design provides a contribution to the hyper-encoded linear quantum optics toolbox.

5.
Opt Express ; 26(25): 32878-32887, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30645448

RESUMEN

Quantum tomography is an essential method of the photonic technology toolbox and is routinely used for evaluation of experimentally prepared states of light and characterization of devices transforming such states. The tomography procedure consists of many different sequentially performed measurements. We present considerable tomography speedup by optimally arranging the individual constituent measurements, which is equivalent to solving an instance of the traveling salesman problem. As an example, we obtain solutions for photonic systems of up to five qubits, and conclude that already for systems of three or more qubits, the total duration of the tomography procedure can be halved. The reported speedup has been verified experimentally for quantum state tomography and also for full quantum process characterization up to six qubits, without resorting to any complexity reduction or simplification of the system of interest. Our approach is versatile and reduces the time of an input-output characterization of optical devices and various scattering processes as well.

6.
Opt Express ; 25(7): 7839-7848, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28380902

RESUMEN

We experimentally characterize a quantum photonic gate that is capable of converting multiqubit entangled states while acting only on two qubits. It is an important tool in large quantum networks, where it can be used for re-wiring of multipartite entangled states or for generating various entangled states required for specific tasks. The gate can be also used to generate quantum information processing resources, such as entanglement and discord. In our experimental demonstration, we characterized the conversion of a linear four-qubit cluster state into different entangled states, including GHZ and Dicke states. The high quality of the experimental results show that the gate has the potential of being a flexible component in distributed quantum photonic networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...