Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Rep ; 10(1): 14877, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913236

RESUMEN

Fatty-acid(FA)-synthase(FASN) is a druggable lipogenic oncoprotein whose blockade causes metabolic disruption. Whether drug-induced metabolic perturbation is essential for anticancer drug-action, or is just a secondary-maybe even a defence response-is still unclear. To address this, SKOV3 and OVCAR3 ovarian cancer(OC) cell lines with clear cell and serous histology, two main OC subtypes, were exposed to FASN-inhibitor G28UCM. Growth-inhibition was compared with treatment-induced cell-metabolomes, lipidomes, proteomes and kinomes. SKOV3 and OVCAR3 were equally sensitive to low-dose G28UCM, but SKOV3 was more resistant than OVCAR3 to higher concentrations. Metabolite levels generally decreased upon treatment, but individual acylcarnitines, glycerophospholipids, sphingolipids, amino-acids, biogenic amines, and monosaccharides reacted differently. Drug-induced effects on central-carbon-metabolism and oxidative-phosphorylation (OXPHOS) were essentially different in the two cell lines, since drug-naïve SKOV3 are known to prefer glycolysis, while OVCAR3 favour OXPHOS. Moreover, drug-dependent increase of desaturases and polyunsaturated-fatty-acids (PUFAs) were more pronounced in SKOV3 and appear to correlate with G28UCM-tolerance. In contrast, expression and phosphorylation of proteins that control apoptosis, FA synthesis and membrane-related processes (beta-oxidation, membrane-maintenance, transport, translation, signalling and stress-response) were concordantly affected. Overall, membrane-disruption and second-messenger-silencing were crucial for anticancer drug-action, while metabolic-rewiring was only secondary and may support high-dose-FASN-inhibitor-tolerance. These findings may guide future anti-metabolic cancer intervention.


Asunto(s)
Membrana Celular/efectos de los fármacos , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Ácido Gálico/análogos & derivados , Lipidómica/métodos , Naftalenos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Proteoma/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Proliferación Celular , Resistencia a Antineoplásicos , Acido Graso Sintasa Tipo I/metabolismo , Inhibidores de la Síntesis de Ácidos Grasos/farmacología , Femenino , Ácido Gálico/farmacología , Humanos , Metaboloma , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal
2.
Anal Chem ; 90(22): 13178-13182, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30383359

RESUMEN

Cancer cells communicate with the whole organism via extracellular vesicles (EVs), which propagate molecular information in support of the malignant phenotype. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was employed for protein profiling of EVs derived from CCL-228 as the primary colon tumor, the lymph node metastasis CCL-227, and subclones resistant to 5, 25, and 125 µM 5-fluorouracil (FU). EVs were harvested from cell culture supernatant by ultracentrifugation to serve as a model for circulating cancer cell-derived biomarker carriers from body fluids (i.e., liquid biopsy). Protein mass spectra were recorded using standard MALDI matrixes (e.g., CHCA, sinapinic acid) in the range m/ z 2000-20000 on different MALDI-TOF-MS systems and subjected to multivariate data analysis . By using hierarchical clustering, PCA and PLS-DA, discriminatory protein patterns of the EVs from the different cell populations were obtained. Peaks in the range  m/ z 2000-6500 and m/ z 5500-15500 were found to be unique to EVs and the cells, respectively. This clearly demonstrates the differential expression of proteins in EVs as the result of an increasing chemoresistance of their parent cells. The sensitivity of the MALDI-MS based assay was in the low µg/mL (≈1.2-5 × 1010 particles/mL) range. Consequently, our MALDI-MS protein profiling approach shows the potential to serve as novel tool for minimally invasive cancer diagnostics and chemotherapy monitoring in the future, e.g., for early detection of therapy resistance without biopsy.


Asunto(s)
Biomarcadores de Tumor/análisis , Resistencia a Antineoplásicos/fisiología , Vesículas Extracelulares/química , Proteínas de Neoplasias/análisis , Proteómica/métodos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Límite de Detección , Proteínas de Neoplasias/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Exp Dermatol ; 27(10): 1142-1151, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30033522

RESUMEN

We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Glándulas Sebáceas/patología , Glándulas Sebáceas/fisiopatología , Sebo/química , Animales , Autofagosomas , Proliferación Celular/genética , Colesterol/análisis , Ácidos Grasos no Esterificados/análisis , Cabello , Masculino , Ratones , Fenotipo , Ceras/análisis
4.
Oncotarget ; 8(7): 11600-11613, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28086243

RESUMEN

Receptor-PI3K-mTORC1 signaling and fatty acid synthase (FASN)-regulated lipid biosynthesis harbor numerous drug targets and are molecularly connected. We hypothesize that unraveling the mechanisms of pathway cross-talk will be useful for designing novel co-targeting strategies for ovarian cancer (OC). The impact of receptor-PI3K-mTORC1 onto FASN is already well-characterized. However, reverse actions-from FASN towards receptor-PI3K-mTORC1-are still elusive. We show that FASN-blockade impairs receptor-PI3K-mTORC1 signaling at multiple levels. Thin-layer chromatography and MALDI-MS/MS reveals that FASN-inhibitors (C75, G28UCM) augment polyunsaturated fatty acids and diminish signaling lipids diacylglycerol (DAG) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in OC cells (SKOV3, OVCAR-3, A2780, HOC-7). Western blotting and micropatterning demonstrate that FASN-blockers impair phosphorylation/expression of EGF-receptor/ERBB/HER and decrease GRB2-EGF-receptor recruitment leading to PI3K-AKT suppression. FASN-inhibitors activate stress response-genes HIF-1α-REDD1 (RTP801/DIG2/DDIT4) and AMPKα causing mTORC1- and S6-repression. We conclude that FASN-inhibitor-mediated blockade of receptor-PI3K-mTORC1 occurs due to a number of distinct but cooperating processes. Moreover, decrease of PI3K-mTORC1 abolishes cross-repression of MEK-ERK causing ERK activation. Consequently, the MEK-inhibitor selumetinib/AZD6244, in contrast to the PI3K/mTOR-inhibitor dactolisib/NVP-BEZ235, increases growth inhibition when given together with a FASN-blocker. We are the first to provide deep insight on how FASN-inhibition blocks ERBB-PI3K-mTORC1 activity at multiple molecular levels. Moreover, our data encourage therapeutic approaches using FASN-antagonists together with MEK-ERK-inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Complejos Multiproteicos/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/fisiología , Ácido Graso Sintasas/metabolismo , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
5.
mBio ; 7(6)2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803183

RESUMEN

Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to "anchorless surface proteins." Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response. IMPORTANCE: Group A streptococcus (GAS) is a Gram-positive bacterial pathogen responsible for more than 500,000 deaths annually. Establishment of GAS infection is dependent on a suite of proteins exported via the general secretory pathway. Here, we show that GAS naturally produces extracellular vesicles with a unique lipid composition that are laden with proteins and RNAs. Interestingly, both virulence-associated proteins and RNA species were found to be differentially abundant in vesicles relative to the bacteria. Furthermore, we show that genetic disruption of the virulence-associated two-component regulator CovRS leads to an increase in vesicle production. This study comprehensively describes the protein, RNA, and lipid composition of GAS-secreted MVs and alludes to a regulatory system impacting this process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Represoras/metabolismo , Vesículas Secretoras/metabolismo , Streptococcus pyogenes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histidina Quinasa , Lípidos/análisis , Proteínas de la Membrana/análisis , ARN/análisis , ARN/genética , Vesículas Secretoras/química , Factores de Virulencia/análisis
6.
J Microbiol Methods ; 130: 27-37, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27546717

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) becomes the method of choice for the rapid identification of microorganisms (i.e. protein biotyping). Although bacterial identification is already quite advanced, biotyping of other microbes including yeasts and fungi are still under development. In this context, lipids (e.g. membrane phospholipids) represent a very important group of molecules with essential functions for cell survival and adaptation to specific environments and habitats of the microorganisms. Therefore, lipids show the potential to serve as additional molecular parameters to be used for biotyping purposes. In this paper we present a molecular characterisation of yeasts and filamentous fungi based on the analysis of lipid composition by MALDI-MS (i.e. MALDI lipid phenotyping). Using a combination of Principal Component Analysis (PCA) and Hierarchical Clustering we could demonstrate that this approach allowed a classification and differentiation of several groups of yeasts (e.g. Saccharomyces) and filamentous fungi (e.g. Aspergillus, Penicillium, Trichoderma) at the species/strain level. By analysing the MALDI lipid profiles we were able to differentiate 26 closely related yeast strains, for which discrimination via genotypic methods like AFLP in this case are relatively more elaborate. Moreover, employing statistical analysis we could identify those lipid parameters (e.g. PCs and LPCs), which were responsible for the differentiation of the strains, thus providing insights into the molecular basis of our results. In summary, MALDI lipid phenotyping represents a suitable method for fungal characterization and shows the potential to be used as companion tool to genotyping and/or protein biotyping for the characterization and identification of yeasts and fungi in diverse areas (e.g. environmental, pharmaceutical, clinical applications, etc.).


Asunto(s)
Hongos/aislamiento & purificación , Lípidos/aislamiento & purificación , Técnicas de Tipificación Micológica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Levaduras/aislamiento & purificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Técnicas de Cultivo de Célula , Análisis por Conglomerados , ADN de Hongos , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Hongos/química , Hongos/clasificación , Hongos/genética , Genotipo , Lípidos/química , Análisis Multivariante , Fenotipo , Fosfolípidos/química , Fosfolípidos/aislamiento & purificación , Especificidad de la Especie , Levaduras/química , Levaduras/clasificación , Levaduras/genética
7.
Int J Cancer ; 136(9): 2078-90, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25302649

RESUMEN

Ovarian cancer (OC) is caused by genetic aberrations in networks that control growth and survival. Importantly, aberrant cancer metabolism interacts with oncogenic signaling providing additional drug targets. Tumors overexpress the lipogenic enzyme fatty acid synthase (FASN) and are inhibited by FASN blockers, whereas normal cells are FASN-negative and FASN-inhibitor-resistant. Here, we demonstrate that this holds true when ovarian/oviductal cells reside in their autochthonous tissues, whereas in culture they express FASN and are FASN-inhibitor-sensitive. Upon subculture, nonmalignant cells cease growth, express senescence-associated ß-galactosidase, lose FASN and become FASN-inhibitor-resistant. Immortalized ovarian/oviductal epithelial cell lines­although resisting senescence­reveal distinct growth activities, which correlate with FASN levels and FASN drug sensitivities. Accordingly, ectopic FASN stimulates growth in these cells. Moreover, FASN levels and lipogenic activities affect cellular lipid composition as demonstrated by thin-layer chromatography. Correlation between proliferation and FASN levels was finally evaluated in cancer cells such as HOC-7, which contain subclones with variable differentiation/senescence and corresponding FASN expression/FASN drug sensitivity. Interestingly, senescent phenotypes can be induced in parental HOC-7 by differentiating agents. In OC cells, FASN drugs induce cell cycle blockade in S and/or G2/M and stimulate apoptosis, whereas in normal cells they only cause cell cycle deceleration without apoptosis. Thus, normal cells, although growth-inhibited, may survive and recover from FASN blockade, whereas malignant cells get extinguished. FASN expression and FASN drug sensitivity are directly linked to cell growth and correlate with transformation/differentiation/senescence only indirectly. FASN is therefore a metabolic marker of cell proliferation rather than a marker of malignancy and is a useful target for future drug development.


Asunto(s)
Biomarcadores de Tumor/genética , Proliferación Celular/genética , Acido Graso Sintasa Tipo I/genética , Neoplasias Ováricas/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular , Línea Celular , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico
8.
Anal Chem ; 86(19): 9954-61, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25219896

RESUMEN

Monitoring bioactive oxidized phospholipids (OxPLs), such as 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-(9'-oxononanoyl)-sn-glycero-3-phosphocholine (PONPC), is of major interest as they play a crucial role in a variety of age related diseases, e.g., in the development and progression of atherosclerosis. Since they are in low abundance in samples like oxidized low-density lipoproteins (OxLDL) and human plasma, respectively, their analysis as risk biomarkers requires the combination of an efficient selective sample preparation with highly sensitive detection methods, such as liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). In this study, a nanoparticle-based strategy for successful trapping and enrichment of aldehyde-containing oxidized phospholipids is presented. The concept involves a derivatization step with a bifunctional reagent containing both a hydrazide group for hydrazone formation with carbonyl-containing PLs and a thiol moiety for subsequent trapping on GNPs. After washing, the trapped analytes are quantitatively released from the nanoparticles' surface by transimination with hydroxylamine. The released oxime-derivatives of the carbonylated-OxPLs are subsequently analyzed by LC-ESI-MS/MS in the selected reaction monitoring scan mode. Several parameters of this workflow were optimized. With the optimized nanoparticle-based extraction and enrichment step, very clean extracts of these biomarkers can be obtained and the detection limits can be significantly decreased from 2.76 and 2.65 nM for PONPC and POVPC, respectively, to 0.17 and 0.44 nM. The applicability of this nanoparticle-based sample preparation concept was demonstrated by successful extraction of oxidized phospholipids from biological samples, such as human plasma, MDA-modified LDL and Cu(2+)-oxidized LDL.


Asunto(s)
Epítopos/sangre , Lipoproteínas LDL/sangre , Fosfatidilcolinas/sangre , Éteres Fosfolípidos/sangre , Biomarcadores/sangre , Biomarcadores/química , Epítopos/química , Humanos , Hidroxilamina/química , Límite de Detección , Lipoproteínas LDL/química , Nanopartículas/química , Oxidación-Reducción , Fosfatidilcolinas/química , Éteres Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
9.
Anal Chem ; 86(13): 6401-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24914456

RESUMEN

In this paper we present a pioneering approach exploiting nanoparticles (NPs) for the "on-probe" (i.e., directly from the NP-surface) monitoring of OxPLs by MALDI-MS (i.e., the Nano-MALDI approach). The "electrophilic interaction" with either metal oxide (e.g., ZrO2) or surface-functionalized Fe3O4 core-shell superparamagnetic NPs (100 nm diameter) was exploited for the direct enrichment of short-chain carboxylic (CARBO)-OxPLs, whereas detection of aldehydic (ALDO)-OxPLs was enabled by prior derivatization with bifunctional carbonyl-reactive reagents containing a negatively charged moiety (e.g., 4-AA) followed by NP-binding. Polyetheramine (PEA)-NPs were found best suited in terms of solvent stability, binding efficiency and compatibility with MALDI-MS analysis. For quantitative analysis of the OxPLs a recently introduced MALDI-QIT-TOF-MS/MS platform (Stübiger et al. Atherosclerosis 2012, 224, 177-186) was employed and cross-validated by LC-ESI-SRM-MS/MS. The sensitivity was found in the sub-nanomolar range (LOD ~200 pM), which is 1-4 orders of magnitude higher than necessary for detection of individual OxPLs under normal and diseased conditions in vivo (e.g., in mouse plasma or human lipoproteins). Consequently, the Nano-MALDI approach shows the potential to serve as novel platform for the screening of OxPLs in biological samples and the development of clinical diagnostic tests in the future.


Asunto(s)
Nanopartículas/química , Fosfolípidos/sangre , Fosfolípidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Humanos , Nanopartículas de Magnetita/química , Ratones , Oxidación-Reducción , Circonio/química
10.
J Am Heart Assoc ; 3(1): e000772, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24584745

RESUMEN

BACKGROUND: Splenectomy is a clinical risk factor for complicated thrombosis. We hypothesized that the loss of the mechanical filtering function of the spleen may enrich for thrombogenic phospholipids in the circulation, thereby affecting the vascular remodeling of thrombosis. METHODS AND RESULTS: We investigated the effects of splenectomy both in chronic thromboembolic pulmonary hypertension (CTEPH), a human model disease for thrombus nonresolution, and in a mouse model of stagnant flow venous thrombosis mimicking deep vein thrombosis. Surgically excised thrombi from rare cases of CTEPH patients who had undergone previous splenectomy were enriched for anionic phospholipids like phosphatidylserine. Similar to human thrombi, phosphatidylserine accumulated in thrombi after splenectomy in the mouse model. A postsplenectomy state was associated with larger and more persistent thrombi. Higher counts of procoagulant platelet microparticles and increased leukocyte-platelet aggregates were observed in mice after splenectomy. Histological inspection revealed a decreased number of thrombus vessels. Phosphatidylserine-enriched phospholipids specifically inhibited endothelial proliferation and sprouting. CONCLUSIONS: After splenectomy, an increase in circulating microparticles and negatively charged phospholipids is enhanced by experimental thrombus induction. The initial increase in thrombus volume after splenectomy is due to platelet activation, and the subsequent delay of thrombus resolution is due to inhibition of thrombus angiogenesis. The data illustrate a potential mechanism of disease in CTEPH.


Asunto(s)
Hipertensión Pulmonar/etiología , Embolia Pulmonar/etiología , Esplenectomía/efectos adversos , Trombosis de la Vena/etiología , Anciano , Animales , Coagulación Sanguínea , Estudios de Casos y Controles , Proliferación Celular , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Endarterectomía , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/cirugía , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Neovascularización Patológica , Fosfatidilserinas/sangre , Activación Plaquetaria , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Embolia Pulmonar/sangre , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/cirugía , Factores de Riesgo , Factores de Tiempo , Vena Cava Inferior/metabolismo , Vena Cava Inferior/patología , Trombosis de la Vena/sangre , Trombosis de la Vena/diagnóstico
11.
Anal Chem ; 85(17): 8376-84, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23895666

RESUMEN

Oxidized low-density lipoproteins (OxLDLs), in particular, oxidized phosphatidylcholines (OxPCs), are known to be involved in pathophysiological processes such as cardiovascular diseases and are described as potential biomarkers, for example, for atherosclerosis. In our study, we used the specific affinity of anti-OxLDL antibodies (Abs) conjugated to gold nanoparticles (GNPs) for extraction and enrichment of OxPCs via selective trapping of OxLDLs from plasma combined with the sensitive detection by liquid chromatography/tandem-mass spectrometry (LC-MS/MS). Successful bioconjugation chemistry of Abs via a bifunctional polyethylene glycol (PEG) spacer and protein G linkage, respectively, was controlled by measuring the surface plasmon resonance (SPR) spectra, size, and zeta potentials. Furthermore, the amount of Ab immobilized onto GNP via the PEG linker was determined. With the optimized immobilization chemistry, the ability and potential of the GNP-based extraction procedure was used for the determination of the dissociation constant, K(d), of the OxLDL binding to the GNP-Ab conjugate. Moreover, apparent K(d)'s were determined for individual PCs and their oxidation products using the compound-specific selected reaction monitoring mode, which allows the characterization of the Ab affinity and, thus, assessment of the potential antigenicity of (Ox)PCs bound to OxLDLs. In summary, the application of GNP-based bioanalysis for selective targeting of OxLDLs and the fast and sensitive detection by LC-MS/MS offers new possibilities for targeted lipidomics in lipoproteins as well as for oxidative stress lipid biomarker screening.


Asunto(s)
Oro/metabolismo , Lipoproteínas LDL/metabolismo , Nanopartículas del Metal , Estrés Oxidativo/fisiología , Espectrometría de Masas en Tándem/métodos , Biomarcadores/metabolismo , Oro/química , Lipoproteínas LDL/análisis , Nanopartículas del Metal/química , Unión Proteica/fisiología
12.
Proc Natl Acad Sci U S A ; 110(28): 11642-7, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798435

RESUMEN

Nerve functions require phosphatidylinositol-4,5-bisphosphate (PIP2) that binds to ion channels, thereby controlling their gating. Channel properties are also attributed to serotonin transporters (SERTs); however, SERT regulation by PIP2 has not been reported. SERTs control neurotransmission by removing serotonin from the extracellular space. An increase in extracellular serotonin results from transporter-mediated efflux triggered by amphetamine-like psychostimulants. Herein, we altered the abundance of PIP2 by activating phospholipase-C (PLC), using a scavenging peptide, and inhibiting PIP2-synthesis. We tested the effects of the verified scarcity of PIP2 on amphetamine-triggered SERT functions in human cells. We observed an interaction between SERT and PIP2 in pull-down assays. On decreased PIP2 availability, amphetamine-evoked currents were markedly reduced compared with controls, as was amphetamine-induced efflux. Signaling downstream of PLC was excluded as a cause for these effects. A reduction of substrate efflux due to PLC activation was also found with recombinant noradrenaline transporters and in rat hippocampal slices. Transmitter uptake was not affected by PIP2 reduction. Moreover, SERT was revealed to have a positively charged binding site for PIP2. Mutation of the latter resulted in a loss of amphetamine-induced SERT-mediated efflux and currents, as well as a lack of PIP2-dependent effects. Substrate uptake and surface expression were comparable between mutant and WT SERTs. These findings demonstrate that PIP2 binding to monoamine transporters is a prerequisite for amphetamine actions without being a requirement for neurotransmitter uptake. These results open the way to target amphetamine-induced SERT-dependent actions independently of normal SERT function and thus to treat psychostimulant addiction.


Asunto(s)
Anfetamina/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Células HEK293 , Humanos , Sistemas de Mensajero Secundario , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
13.
Atherosclerosis ; 224(1): 177-86, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22795978

RESUMEN

OBJECTIVES: Phospholipids (PLs) are increasingly recognized as key molecules with potential diagnostic value in acute inflammation, CVD and atherosclerosis. We introduce a pioneer mass spectrometry (MS)-based approach aiming to investigate the relationship of specific plasma PL-subsets with atherogenic blood parameters in young patients with familial hyperlipidemia representing high-CVD-risk groups. METHODS: Plasma of carefully phenotyped FH and FCH patients as well as normolipidemic subjects (age 13 ± 5 years, n = 20) was used. Clinical parameters were assessed using standard laboratory techniques and lipids were subjected to a direct targeted monitoring using LC-ESI-SRM- and MALDI-QIT-TOF-MS/MS, respectively. Statistical analysis was performed to evaluate correlations between PL data and the clinical parameters. RESULTS: Most characteristically significant differences of SM/PC and PC/LPC ratios and positive correlations between SM vs. LDL-C (r = 0.946; p = 0.004) and LPC vs. VLDL-C (r = 0.669; p = 0.218) were observed in FH in contrast to the other study groups. OxPC levels were found in the range of ∼2-20 µmol/L with predominance of short-chain aldehydic species (e.g. SOVPC). A positive correlation of OxPCs with IMT (r = 0.952; p = 0.052) and HDL-C (r = 0.893; p = 0.016) but negative correlation with OxLDL (r = -0.910; p = 0.096) was observed. CONCLUSIONS: Our study was a first attempt to use a MALDI-QIT-TOF-MS/MS based clinical lipidomics approach to investigate atherogenic dyslipidemia in young patients with familial hyperlipidemia. This technique represents a promising platform for clinical screening of lipid biomarkers in the future.


Asunto(s)
Hiperlipidemia Familiar Combinada/sangre , Hiperlipoproteinemia Tipo II/sangre , Lipoproteínas/sangre , Fosfolípidos/sangre , Adolescente , Aterosclerosis/sangre , Biomarcadores/sangre , Niño , LDL-Colesterol , Femenino , Humanos , Lisofosfatidilcolinas/sangre , Masculino , Fosfatidilcolinas/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Esfingomielinas/sangre , Espectrometría de Masas en Tándem , Adulto Joven
14.
Chem Phys Lipids ; 164(6): 563-72, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21684268

RESUMEN

In the present study a direct detection approach combining size-exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight tandem-mass spectrometry (MALDI-QIT-TOF-MS/MS) was applied to investigate the influence of HSA and IgG on LDL oxidation in vitro. SEC analysis showed an increase of protein aggregation during LDL-oxidation that could be essentially suppressed in the presence of HSA. In parallel, lipid peroxidation measured by TBARS assay over 24h was inhibited by 95-100% in the presence of HSA but only 0-34% by IgG, respectively. MALDI phospholipid profiles showed considerable decrease of signals from PCs containing sn-2 PUFAs (18:2 or 20:4) accompanied by increase of sn-2 LPCs indicating for specific breakdown of PUFA-containing PLs during LDL-oxidation. These effects were nearly 100% inhibited in the presence of HSA but not by IgG, respectively. Among known pro-atherogenic PL species present in human plasma sphingomyelin (SM16:0) was bound in significant amounts to HSA but not IgG after incubation with oxLDL. Moreover, our investigation showed that LPCs containing SAFAs (16:0 or 18:0) were specifically bound to HSA, while those containing PUFAs (18:2 and 18:3) were preferentially associated with IgG. In summary, the presented methodology provides a promising platform for studying lipid-protein interactions in vivo.


Asunto(s)
Cromatografía en Gel/métodos , Inmunoglobulina G/farmacología , Lipoproteínas LDL/metabolismo , Fosfolípidos/metabolismo , Albúmina Sérica/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adulto , Aterosclerosis , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Inmunoglobulina G/aislamiento & purificación , Lisofosfatidilcolinas/metabolismo , Masculino , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , Albúmina Sérica/aislamiento & purificación , Esfingomielinas/metabolismo
15.
Anal Chem ; 82(13): 5502-10, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20533831

RESUMEN

6-Aza-2-thiothymine (ATT) is introduced as novel matrix system for the analysis of oxidized phospholipids (OxPLs) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A systematic evaluation comparing different established and novel matrix substances, especially 2,4,6-THAP matrix (Stubiger, G.; Belgacem O. Anal. Chem. 2007, 79, 3206-3213) as reference compound for phospholipid analysis, and specific matrix additives was performed. Thereby, ATT turned out to be the reagent of choice for MALDI analysis of major biologically relevant OxPL classes (e.g., OxPC, OxPE, and OxPS) in positive and negative ionization mode. ATT used together with specific chaotropic reagents at low concentration (0.5-2 mM) acting as OxPL ionization enhancers revealed an excellent comatrix system for application with MALDI instrument types employing UV- and Nd:YAG laser systems (337 and 355 nm). Moreover, disposable MALDI targets surfaces with specific physicochemical properties (e.g., metallized glass or polymeric substrates) were revealed as superior over stainless steel in terms of reduced chemical background noise ( approximately 10-fold better S/N ratios), increased mass spectral reproducibility, and enhanced sensitivity (LOD approximately 250-500 fg on target). The combination of these parameters offers a significant advantage for highly sensitive OxPL profiling by MALDI-MS of biological samples (e.g., human plasma) at trace levels.


Asunto(s)
Fosfolípidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Timina/análogos & derivados , Humanos , Láseres de Estado Sólido , Oxidación-Reducción , Fosfolípidos/sangre , Fosfolípidos/aislamiento & purificación , Extracción en Fase Sólida , Timina/química , Triazinas
16.
Rapid Commun Mass Spectrom ; 23(17): 2711-23, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19639618

RESUMEN

An improved analytical strategy for the analysis of complex lipid mixtures using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) in combination with high-performance thin-layer chromatography (HPTLC) is reported. Positive ion MALDI RTOF MS was applied as a rapid screening tool for the various neutral (e.g. triacylglycerols) and polar (e.g. glycerophospholipids and -sphingolipids) lipid classes derived from crude lipid extracts of e.g. human plasma as well as soybean lecithin. Finally, MALDI seamless post-source decay (PSD) product ion analysis was performed in order to obtain further structural information (head- and acyl-group identification) of selected lipid species and structure verification. A Coomassie Brilliant Blue R-250 staining protocol for lipids on HPTLC plates was evaluated and was found to be fully compatible with subsequent MALDI-MS. Lipids were analyzed after elution from the HPTLC phase material of the selected band (corresponding to certain lipid classes) by using the proper organic solvent mixture or in few cases directly from the HPTLC plates (a type of on-line HPTLC/MALDI-MS coupling). More than 70 distinct lipid species from seven different lipid classes in the range between m/z 500 and 1500 could be identified from the lipid extracts of human plasma and soybean lecithin, respectively. The general high sensitivity of MALDI-MS detection allowed the analysis of even minor lipid classes from only very small volumes of human plasma (50 microL). The combination of HPTLC, Coomassie staining and positive ion MALDI curved field RTOF-MS represents a straightforward strategy during lipidomics studies of food and clinically relevant human lipid samples.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Glycine max/química , Lecitinas/química , Lípidos/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos
17.
Anal Chem ; 80(5): 1664-78, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18229894

RESUMEN

In this paper, we present the results of a detailed study using MALDI seamless postsource decay (sPSD) fragment ion analysis of all major glycerophospholipid (GPL) classes, cardiolipin (bisphosphatidylglycerol), and sphingomyelin, respectively. The matrix compound 2,4,6-trihydroxyacetophenon recently introduced for lipid analysis (Stübiger, G.; Belgacem O. Anal. Chem. 2007, 79, 3206-3213) was applied in conjunction with a high-resolution curved field reflectron analyzer allowing detection of the fragment ions without stepping the reflectron voltages (seamless PSD). This instrumental feature helps to define in a fast way the polar headgroups of the different GPL classes and gives information about the constituent fatty acid residues dependent on the type of adduct ion used. Our experiments demonstrate that fragment ions specifying the fatty acid composition of the lipid molecules could only be generated from cationized molecular ions (sodiated or lithiated). Additionally, information about the stereospecificity of the fatty acid residues on the glycerol backbone (sn-1, and -2 position) of particular GPLs could be obtained during sPSD analysis. In the case of phosphatidylcholine, significant fragmentation related to the loss of the acyl groups could only be observed from [M + Li](+) ions. Generally, alkali adduction (sodium and lithium) enhanced fragmentation of most lipid classes, particularly favoring fragment ions associated with the polar headgroups.


Asunto(s)
Litio/química , Fosfolípidos/química , Sodio/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estructura Molecular
18.
Anal Chem ; 79(8): 3206-13, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17367115

RESUMEN

Lipids exhibit a broad range of chemical properties that make their analysis quite demanding. Today, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) represents a versatile tool in the field of lipid analysis, also offering the possibility for molecular structural identification using novel MALDI tandem time-of-flight (TOF/TOF) instrumentation. In this study, we evaluated 2,4,6-trihydroxyacetophenone (THAP) for the analysis of various lipid classes including neutral storage lipids (triacylglycerols), polar membrane lipids (glycerophospho- and sphingolipids), and glycosphingolipids. THAP proved to be a versatile matrix for the routine analysis of various lipids from biological samples ("lipidomics"). A sample preparation methodology was established using selective alkali salt doping for subsequent MS/MS experiments. Sodiated and lithiated molecules provided superior structural information on lipids (i.e., acyl group identification); thus, following this approach, both selective peak detection with high sensitivity and more reliable structural information were obtained simultaneously.


Asunto(s)
Acetofenonas/química , Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cerebrósidos/análisis , Cerebrósidos/química , Lípidos/química
19.
Biologicals ; 35(1): 43-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16580227

RESUMEN

Human serum albumin (HSA) is the most abundant protein in plasma. It is known to transport drugs as well as endogenous ligands, like free fatty acids (FFA). A mass spectrometry based method was applied to analyze the albumin bound lipid ligands. HSA was isolated from a human plasma pool by cold ethanol fractionation and ion exchange chromatography. HSA was defatted using a solvent extraction method to release the copurified lipids bound to the protein. The extracts were then analyzed by matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Using this method, phospholipids and acylglycerols were detected. The phospholipids were identified to be lyso-phosphatidylcholine (lyso-PC) with distribution of different fatty acids (palmitic, stearic, oleic, and linoleic acids). An abundant species in the HSA lipid extract was found to be a diacylglycerol, composed of two linoleic and/or oleic acid chains. The identified motifs reflect structures that are known to be present in plasma. The binding of lysophospholipids has already been described but it is the first ever-reported evidence of native diacylglycerol ligands bound to HSA. Besides the native ligands from plasma a triacylglycerol was detected that has been added during the albumin preparation steps.


Asunto(s)
Ácidos Grasos/aislamiento & purificación , Albúmina Sérica/química , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Ácidos Grasos/química , Humanos , Albúmina Sérica/aislamiento & purificación , Soluciones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
J Sep Sci ; 28(14): 1764-78, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16224972

RESUMEN

The structural characterization of the O- and N-glycan structures of three different commercially available recombinant human erythropoietins (rhEPOs) is represented by means of a microscale sample purification using ZipTip technology and MALDI-TOF and MALDI low-energy CID MS. Glycopeptides were released from rhEPO samples by a differential endoproteolytic digestion to obtain site-specific glycosylation patterns. Mass accuracies in the range of +/- 0.04% obtained by the high-resolution TOF instrument allowed an unambiguous assignment of N-glycan structures via glycan database software. Furthermore, the O-glycan structures were directly analyzed on the glycopeptide level by MS/MS experiments. Principally, site-specific glycosylation was found to be very similar for the three different rhEPOs (EPO-alpha, EPO-beta, and novel erythropoiesis stimulating protein (NESP)) but exhibiting quantitative differences in distinct O- and N-glycan moieties. Significant differences were found in the degree of sialylation and acetylation. Especially, a considerable degree of variation of the O-acetylation of sialic acid residues could be realized on the glycan structures of O- and N-glycopeptides, whereas EPO-alpha and EPO-beta could be clearly differentiated from NESP solely on the O-glycopeptide level.


Asunto(s)
Eritropoyetina/química , Glicopéptidos/química , Eritropoyetina/aislamiento & purificación , Liofilización/métodos , Glicopéptidos/aislamiento & purificación , Humanos , Indicadores y Reactivos , Espectrometría de Masas/métodos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Proteínas Recombinantes , Solventes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA