Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 47(2): 515-532, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33559015

RESUMEN

There are still numerous difficulties in the successful farming of pikeperch in the anthropogenic environment of various aquaculture systems, especially during early developmental steps in the hatchery. To investigate the physiological processes involved on the molecular level, we determined the basal expression patterns of 21 genes involved in stress and immune responses and early ontogenesis of pikeperch between 0 and 175 days post hatch (dph). Their transcription patterns most likely reflect the challenges of growth and feed conversion. The gene coding for apolipoprotein A (APOE) was strongly expressed at 0 dph, indicating its importance for yolk sac utilization. Genes encoding bone morphogenetic proteins 4 and 7 (BMP4, BMP7), creatine kinase M (CKM), and SRY-box transcription factor 9 (SOX9) were highly abundant during the peak phases of morphological changes and acclimatization processes at 4-18 dph. The high expression of genes coding for peroxisome proliferator-activated receptors alpha and delta (PPARA, PPARD) at 121 and 175 dph, respectively, suggests their importance during this strong growth phase of juvenile stages. As an alternative experimental model to replace further in vivo investigations of ontogenetically important processes, we initiated the first approach towards a long-lasting primary cell culture from whole pikeperch embryos. The present study provides a set of possible biomarkers to support the monitoring of pikeperch farming and provides a first basis for the establishment of a suitable cell model of this emerging aquaculture species.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Perciformes/crecimiento & desarrollo , Estrés Fisiológico , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Embrión no Mamífero , Desarrollo Embrionario , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Transcriptoma
2.
Sci Rep ; 10(1): 22335, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339898

RESUMEN

Pikeperch (Sander lucioperca) is a fish species with growing economic significance in the aquaculture industry. However, successful positioning of pikeperch in large-scale aquaculture requires advances in our understanding of its genome organization. In this study, an ultra-high density linkage map for pikeperch comprising 24 linkage groups and 1,023,625 single nucleotide polymorphisms markers was constructed after genotyping whole-genome sequencing data from 11 broodstock and 363 progeny, belonging to 6 full-sib families. The sex-specific linkage maps spanned a total of 2985.16 cM in females and 2540.47 cM in males with an average inter-marker distance of 0.0030 and 0.0026 cM, respectively. The sex-averaged map spanned a total of 2725.53 cM with an average inter-marker distance of 0.0028 cM. Furthermore, the sex-averaged map was used for improving the contiguity and accuracy of the current pikeperch genome assembly. Based on 723,360 markers, 706 contigs were anchored and oriented into 24 pseudomolecules, covering a total of 896.48 Mb and accounting for 99.47% of the assembled genome size. The overall contiguity of the assembly improved with a scaffold N50 length of 41.06 Mb. Finally, an updated annotation of protein-coding genes and repetitive elements of the enhanced genome assembly is provided at NCBI.


Asunto(s)
Ligamiento Genético/genética , Genoma/genética , Percas/genética , Sitios de Carácter Cuantitativo/genética , Animales , Mapeo Cromosómico , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética/genética
3.
Genes (Basel) ; 10(9)2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540274

RESUMEN

The pikeperch (Sander lucioperca) is a fresh and brackish water Percid fish natively inhabiting the northern hemisphere. This species is emerging as a promising candidate for intensive aquaculture production in Europe. Specific traits like cannibalism, growth rate and meat quality require genomics based understanding, for an optimal husbandry and domestication process. Still, the aquaculture community is lacking an annotated genome sequence to facilitate genome-wide studies on pikeperch. Here, we report the first highly contiguous draft genome assembly of Sander lucioperca. In total, 413 and 66 giga base pairs of DNA sequencing raw data were generated with the Illumina platform and PacBio Sequel System, respectively. The PacBio data were assembled into a final assembly size of ~900 Mb covering 89% of the 1,014 Mb estimated genome size. The draft genome consisted of 1966 contigs ordered into 1,313 scaffolds. The contig and scaffold N50 lengths are 3.0 Mb and 4.9 Mb, respectively. The identified repetitive structures accounted for 39% of the genome. We utilized homologies to other ray-finned fishes, and ab initio gene prediction methods to predict 21,249 protein-coding genes in the Sander lucioperca genome, of which 88% were functionally annotated by either sequence homology or protein domains and signatures search. The assembled genome spans 97.6% and 96.3% of Vertebrate and Actinopterygii single-copy orthologs, respectively. The outstanding mapping rate (99.9%) of genomic PE-reads on the assembly suggests an accurate and nearly complete genome reconstruction. This draft genome sequence is the first genomic resource for this promising aquaculture species. It will provide an impetus for genomic-based breeding studies targeting phenotypic and performance traits of captive pikeperch.


Asunto(s)
Genoma , Percas/genética , Animales , Proteínas de Peces/genética , Anotación de Secuencia Molecular , Percas/clasificación , Filogenia , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...