Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 15(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196640

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology upon DUX4 activation, including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered rapid widespread changes in protein phosphorylation following DUX4 induction, indicating that alterations in kinase signaling might play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover that the JNK pathway is involved in DUX4-mediated cell death and provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.


Asunto(s)
Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mioblastos/metabolismo , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo
2.
Skelet Muscle ; 7(1): 25, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29121992

RESUMEN

BACKGROUND: The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-ß (TGF-ß) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. METHODS: A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-ß ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. RESULTS: Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. CONCLUSIONS: We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.


Asunto(s)
Anticuerpos/administración & dosificación , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Miostatina/inmunología , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/fisiopatología , Miostatina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
3.
MAbs ; 8(7): 1302-1318, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27625211

RESUMEN

Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.


Asunto(s)
Anticuerpos Monoclonales/química , Regiones Determinantes de Complementariedad/química , Miostatina/inmunología , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales/inmunología , Regiones Determinantes de Complementariedad/inmunología , Humanos , Ratones , Modelos Moleculares
4.
J Med Chem ; 57(6): 2462-71, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24527807

RESUMEN

We present a novel series of selective androgen receptor modulators (SARMs) which shows excellent biological activity and physical properties. 1-(2-Hydroxy-2-methyl-3-phenoxypropanoyl)-indoline-4-carbonitriles showed potent binding to the androgen receptor (AR) and activated AR-mediated transcription in vitro. Representative compounds demonstrated diminished activity in promoting the intramolecular interaction between the AR carboxyl (C) and amino (N) termini. This N/C-termini interaction is a biomarker assay for the undesired androgenic responses in vivo. In orchidectomized rats, daily administration of a lead compound from this series showed anabolic activity by increasing levator ani muscle weight. Importantly, minimal androgenic effects (increased tissue weights) were observed in the prostate and seminal vesicles, along with minimal repression of circulating luteinizing hormone (LH) levels and no change in the lipid and triglyceride levels. This lead compound completed a two week rat toxicology study, and was well tolerated at doses up to 100 mg/kg/day, the highest dose tested, for 14 consecutive days.


Asunto(s)
Indoles/síntesis química , Indoles/farmacología , Receptores Androgénicos/efectos de los fármacos , Anabolizantes/síntesis química , Anabolizantes/farmacología , Animales , Área Bajo la Curva , Disponibilidad Biológica , Biomarcadores , Línea Celular , Metabolismo de los Lípidos/efectos de los fármacos , Hormona Luteinizante/antagonistas & inhibidores , Hormona Luteinizante/metabolismo , Masculino , Modelos Moleculares , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Orquiectomía , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo , Relación Estructura-Actividad , Testículo/efectos de los fármacos , Testículo/metabolismo , Testosterona/biosíntesis , Triglicéridos/metabolismo , Difracción de Rayos X
5.
Physiol Genomics ; 43(19): 1075-86, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21791639

RESUMEN

Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions.


Asunto(s)
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Tendón Calcáneo/lesiones , Tendón Calcáneo/metabolismo , Animales , Perfilación de la Expresión Génica , Miembro Posterior/lesiones , Miembro Posterior/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Atrofia Muscular/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tenotomía
6.
J Orthop Res ; 29(10): 1604-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21469182

RESUMEN

Tendon injuries that result in partial or complete tears often come from chronic, repetitive use, or from sudden trauma. In some cases, torn tendons can be repaired, but such repairs often fail to completely restore tendon function. We used global gene expression profiling and histological examination to study tendon repair to elucidate key molecular processes that regulate the rate and quality of tissue restoration. Using a rat Achilles tendon transection model, tissue was collected at 3, 7, 10, and 15 days postinjury. The pattern of gene expression in the repairing tissue paralleled the healing phases of inflammation, matrix formation, and matrix reorganization. Newly formed repaired tissue is characterized by cells expressing many genes associated with tendon formation, thereby potentially distinguishing this repair tissue from other types of repair or scar tissue. Addition of recombinant human bone morphogenic protein (rhBMP)12 or rhBMP13, also known as growth and differentiation factors (GDFs) 6 and 7, 1 day after injury yielded increases in tissue volume, rate of cellular infiltration, and in changes in levels of key mRNAs involved in tendon repair. Altogether, our results indicate that rhBMP12 or rhBMP13 enhance the rate of tendon repair. A better understanding of the key molecular regulators of tendon repair could lead to the development of new therapies for tendon injuries and the identification of diagnostic markers that indicate the status of tendon repair after injury.


Asunto(s)
Tendón Calcáneo/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Factor 6 de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Traumatismos de los Tendones/metabolismo , Cicatrización de Heridas , Tendón Calcáneo/patología , Animales , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/uso terapéutico , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica , Factor 6 de Diferenciación de Crecimiento/farmacología , Factor 6 de Diferenciación de Crecimiento/uso terapéutico , Factores de Diferenciación de Crecimiento/farmacología , Factores de Diferenciación de Crecimiento/uso terapéutico , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/uso terapéutico , Traumatismos de los Tendones/tratamiento farmacológico , Traumatismos de los Tendones/patología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...