Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
4.
Nat Commun ; 14(1): 4281, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460464

RESUMEN

The bacterial genus Kingella includes two pathogenic species, namely Kingella kingae and Kingella negevensis, as well as strictly commensal species. Both K. kingae and K. negevensis secrete a toxin called RtxA that is absent in the commensal species. Here we present a phylogenomic study of the genus Kingella, including new genomic sequences for 88 clinical isolates, genotyping of another 131 global isolates, and analysis of 52 available genomes. The phylogenetic evidence supports that the toxin-encoding operon rtxCA was acquired by a common ancestor of the pathogenic Kingella species, and that a preexisting type-I secretion system was co-opted for toxin export. Subsequent genomic reorganization distributed the toxin machinery across two loci, with 30-35% of K. kingae strains containing two copies of the rtxA toxin gene. The rtxA duplication is largely clonal and is associated with invasive disease. Assays with isogenic strains show that a single copy of rtxA is associated with reduced cytotoxicity in vitro. Thus, our study identifies key steps in the evolutionary transition from commensal to pathogen, including horizontal gene transfer, co-option of an existing secretion system, and gene duplication.


Asunto(s)
Toxinas Bacterianas , Kingella kingae , Filogenia , Virulencia/genética , Toxinas Bacterianas/genética , Kingella/genética , Kingella kingae/genética
6.
Infect Immun ; 91(1): e0033822, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36537792

RESUMEN

Kingella kingae is an emerging pathogen that has recently been identified as a leading cause of osteoarticular infections in young children. Colonization with K. kingae is common, with approximately 10% of young children carrying this organism in the oropharynx at any given time. Adherence to epithelial cells represents the first step in K. kingae colonization of the oropharynx, a prerequisite for invasive disease. Type IV pili and the pilus-associated PilC1 and PilC2 proteins have been shown to mediate K. kingae adherence to epithelial cells, but the molecular mechanism of this adhesion has remained unknown. Metal ion-dependent adhesion site (MIDAS) motifs are commonly found in integrins, where they function to promote an adhesive interaction with a ligand. In this study, we identified a potential MIDAS motif in K. kingae PilC1 which we hypothesized was directly involved in mediating type IV pilus adhesive interactions. We found that the K. kingae PilC1 MIDAS motif was required for bacterial adherence to epithelial cell monolayers and extracellular matrix proteins and for twitching motility. Our results demonstrate that K. kingae has co-opted a eukaryotic adhesive motif for promoting adherence to host structures and facilitating colonization.


Asunto(s)
Kingella kingae , Infecciones por Neisseriaceae , Niño , Humanos , Preescolar , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Kingella kingae/genética , Kingella kingae/metabolismo , Adhesión Bacteriana , Fimbrias Bacterianas/metabolismo , Células Epiteliales/microbiología , Metales/metabolismo , Infecciones por Neisseriaceae/microbiología
7.
Front Pediatr ; 10: 1018054, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304526

RESUMEN

Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a leading etiology of septic arthritis, osteomyelitis, and bacteremia and an occasional cause of endocarditis in young children. The pathogenesis of K. kingae disease begins with colonization of the upper respiratory tract followed by breach of the respiratory epithelial barrier and hematogenous spread to distant sites of infection, primarily the joints, bones, and endocardium. As recognition of K. kingae as a pathogen has increased, interest in defining the molecular determinants of K. kingae pathogenicity has grown. This effort has identified numerous bacterial surface factors that likely play key roles in the pathogenic process of K. kingae disease, including type IV pili and the Knh trimeric autotransporter (adherence to the host), a potent RTX-family toxin (epithelial barrier breach), and multiple surface polysaccharides (complement and neutrophil resistance). Herein, we review the current state of knowledge of each of these factors, providing insights into potential approaches to the prevention and/or treatment of K. kingae disease.

8.
mBio ; 13(5): e0229522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069736

RESUMEN

Kingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity. The K. kingae exopolysaccharide is a galactofuranose homopolymer called galactan and is encoded by the pamABC genes in the pamABCDE locus. In this study, we sought to define the mechanism by which galactan is tethered on the bacterial surface, a prerequisite for mediating evasion of host immune mechanisms. We found that the pamD and pamE genes encode glycosyltransferases and are required for synthesis of an atypical lipopolysaccharide (LPS) O-antigen. The LPS O-antigen in turn is required for anchoring of galactan, a novel mechanism for association of an exopolysaccharide with the bacterial surface. IMPORTANCE Kingella kingae is an emerging pediatric pathogen and produces invasive disease by colonizing the oropharynx, invading the bloodstream, and disseminating to distant sites. This organism produces a uniquely multifunctional exopolysaccharide called galactan that is critical for virulence and promotes intravascular survival by mediating resistance to serum and neutrophils. In this study, we established that at least some galactan is anchored to the bacterial surface via a novel structural interaction with an atypical lipopolysaccharide O-antigen. Additionally, we demonstrated that the atypical O-antigen is synthesized by the products of the pamD and pamE genes, located downstream of the gene cluster responsible for galactan biosynthesis. This work addresses how the K. kingae exopolysaccharide can mediate innate immune resistance and advances understanding of bacterial exopolysaccharides and lipopolysaccharides.


Asunto(s)
Kingella kingae , Infecciones por Neisseriaceae , Humanos , Niño , Preescolar , Kingella kingae/química , Lipopolisacáridos , Antígenos O/genética , Galactanos , Glicosiltransferasas/genética , Infecciones por Neisseriaceae/microbiología
9.
PLoS Pathog ; 18(3): e1010440, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353876

RESUMEN

The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain.


Asunto(s)
Kingella kingae , Adhesinas Bacterianas/genética , Adhesivos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Niño , Preescolar , ADN , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Kingella kingae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...