RESUMEN
UNLABELLED: Patients with Type 6 episodic ataxia (EA6) have mutations of the excitatory amino acid transporter EAAT1 (also known as GLAST), but the underlying pathophysiological mechanism for EA6 is not known. EAAT1 is a glutamate transporter expressed by astrocytes and other glia, and it serves dual function as an anion channel. One EA6-associated mutation is a P>R substitution (EAAT1(P>R)) that in transfected cells has a reduced rate of glutamate transport and an abnormal anion conductance. We expressed this EAAT1(P>R) mutation in glial cells of Drosophila larvae and found that these larvae exhibit episodic paralysis, and their astrocytes poorly infiltrate the CNS neuropil. These defects are not seen in Eaat1-null mutants, and so they cannot be explained by loss of glutamate transport. We instead explored the role of the abnormal anion conductance of the EAAT1(P>R) mutation, and to do this we expressed chloride cotransporters in astrocytes. Like the EAAT1(P>R) mutation, the chloride-extruding K(+)-Cl(-) cotransporter KccB also caused astroglial malformation and paralysis, supporting the idea that the EAAT1(P>R) mutation causes abnormal chloride flow from CNS glia. In contrast, the Na(+)-K(+)-Cl(-) cotransporter Ncc69, which normally allows chloride into cells, rescued the effects of the EAAT1(P>R) mutation. Together, our results indicate that the cytopathology and episodic paralysis in our Drosophila EA6 model stem from a gain-of-function chloride channelopathy of glial cells. SIGNIFICANCE STATEMENT: We studied a mutation found in episodic ataxia of the dual-function glutamate transporter/anion channel EAAT1, and discovered it caused malformation of astrocytes and episodes of paralysis in a Drosophila model. These effects were mimicked by a chloride-extruding cotransporter and were rescued by restoring chloride homeostasis to glial cells with a Na(+)-K(+)-2Cl(-) cotransporter. Our findings reveal a new pathophysiological mechanism in which astrocyte cytopathology and neural circuit dysfunction arise via disruption of the ancillary function of EAAT1 as a chloride channel. In some cases, this mechanism might also be important for neurological diseases related to episodic ataxia, such as hemiplegia, migraine, and epilepsy.
Asunto(s)
Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Animales , Animales Modificados Genéticamente , Ataxia Cerebelosa/fisiopatología , Canales de Cloruro/metabolismo , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Femenino , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva , Locomoción/genética , Masculino , Mutación/genética , Neuroglía/metabolismo , Estadísticas no Paramétricas , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K ClRESUMEN
Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.
Asunto(s)
Astrocitos/citología , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Proteínas del Tejido Nervioso/genética , Neurópilo/citología , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas/genética , Receptores Notch/genética , Factores de Transcripción/genética , Animales , Astrocitos/metabolismo , Linaje de la Célula/fisiología , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/citología , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores Notch/metabolismo , Factores de Transcripción/metabolismoRESUMEN
In the mammalian CNS, glial cells expressing excitatory amino acid transporters (EAATs) tightly regulate extracellular glutamate levels to control neurotransmission and protect neurons from excitotoxic damage. Dysregulated EAAT expression is associated with several CNS pathologies in humans, yet mechanisms of EAAT regulation and the importance of glutamate transport for CNS development and function in vivo remain incompletely understood. Drosophila is an advanced genetic model with only a single high-affinity glutamate transporter termed Eaat1. We found that Eaat1 expression in CNS glia is regulated by the glycosyltransferase Fringe, which promotes neuron-to-glia signaling through the Delta-Notch ligand-receptor pair during embryogenesis. We made Eaat1 loss-of-function mutations and found that homozygous larvae could not perform the rhythmic peristaltic contractions required for crawling. We found no evidence for excitotoxic cell death or overt defects in the development of neurons and glia, and the crawling defect could be induced by postembryonic inactivation of Eaat1. Eaat1 fully rescued locomotor activity when expressed in only a limited subpopulation of glial cells situated near potential glutamatergic synapses within the CNS neuropil. Eaat1 mutants had deficits in the frequency, amplitude, and kinetics of synaptic currents in motor neurons whose rhythmic patterns of activity may be regulated by glutamatergic neurotransmission among premotor interneurons; similar results were seen with pharmacological manipulations of glutamate transport. Our findings indicate that Eaat1 expression is promoted by Fringe-mediated neuron-glial communication during development and suggest that Eaat1 plays an essential role in regulating CNS neural circuits that control locomotion in Drosophila.
Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Locomoción/fisiología , N-Acetilglucosaminiltransferasas/fisiología , Neuroglía/metabolismo , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Electrofisiología , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 1 de Aminoácidos Excitadores/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Larva , Mutación/fisiología , N-Acetilglucosaminiltransferasas/genética , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiologíaRESUMEN
Interactions between neurons and glial cells are crucial for nervous system development and function in all complex organisms, and many functional, morphological and molecular features of glia are well conserved among species. Here we review studies of the longitudinal glia (LG) in the Drosophila CNS. The LG envelop the neuropil in a membrane sheath, and have features resembling both oligodendrocytes and astrocytes. Because of their unique lineage, morphology and molecular features, the LG provide an excellent model to study the genetic mechanisms underlying glial subtype differentiation and diversity, glial morphogenesis and neuron-glial interactions during development. In addition, they are proving useful in understanding how glial cells maintain ion and neurotransmitter homeostasis and protect neurons from environmental insult.