Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(23): 239901, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563234

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.120.223202.

2.
Nature ; 575(7782): 310-314, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723290

RESUMEN

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter1, and an even larger amount of the Universe's energy content is attributed to dark energy2. However, the microscopic properties of these dark components remain unknown. Moreover, even ordinary matter-which accounts for five per cent of the energy density of the Universe-has yet to be understood, given that the standard model of particle physics lacks any consistent explanation for the predominance of matter over antimatter3. Here we present a direct search for interactions of antimatter with dark matter and place direct constraints on the interaction of ultralight axion-like particles (dark-matter candidates) with antiprotons. If antiprotons have a stronger coupling to these particles than protons do, such a matter-antimatter asymmetric coupling could provide a link between dark matter and the baryon asymmetry in the Universe. We analyse spin-flip resonance data in the frequency domain acquired with a single antiproton in a Penning trap4 to search for spin-precession effects from ultralight axions, which have a characteristic frequency governed by the mass of the underlying particle. Our analysis constrains the axion-antiproton interaction parameter to values greater than 0.1 to 0.6 gigaelectronvolts in the mass range from 2 × 10-23 to 4 × 10-17 electronvolts, improving the sensitivity by up to five orders of magnitude compared with astrophysical antiproton bounds. In addition, we derive limits on six combinations of previously unconstrained Lorentz- and CPT-violating terms of the non-minimal standard model extension5.

3.
Phys Rev Lett ; 120(1): 013202, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350966

RESUMEN

In the presence of P, T-violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including ^{133}Cs, ^{205}Tl, ^{129}Xe, ^{199}Hg, ^{171}Yb^{19}F, ^{180}Hf^{19}F^{+}, and ^{232}Th^{16}O, we constrain the P, T-violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for m_{a}≳10^{-2} eV. We also place constraints on CP violation in certain types of relaxion models.

4.
Phys Rev Lett ; 119(22): 223201, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286801

RESUMEN

In the presence of P-violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba^{+}, Yb, Tl, Fr, and Ra^{+} using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector-boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC amplitudes in Cs, Yb, and Tl, as well as the nuclear anapole moment of ^{133}Cs, we constrain the P-violating vector-pseudovector nucleon-electron and nucleon-proton interactions mediated by a generic vector boson of arbitrary mass. Our limits improve on existing bounds from other experiments by many orders of magnitude over a very large range of vector-boson masses.

5.
Phys Rev Lett ; 116(16): 169002, 2016 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152827
6.
Phys Rev Lett ; 117(27): 271601, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084774

RESUMEN

We propose a new method to search for hypothetical scalar particles that have feeble interactions with standard-model particles. In the presence of massive bodies, these interactions produce a nonzero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales >10 cm. In the limit as the scalar-particle mass m_{ϕ}→0, our derived limits on the Yukawa-type interaction parameters are Λ_{γ}≳8×10^{19} GeV, Λ_{e}≳1.3×10^{19} GeV, and Λ_{N}≳6×10^{20} GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.

7.
Phys Rev Lett ; 115(20): 201301, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613429

RESUMEN

We demonstrate that massive fields, such as dark matter, can directly produce a cosmological evolution of the fundamental constants of nature. We show that a scalar or pseudoscalar (axionlike) dark matter field ϕ, which forms a coherently oscillating classical field and interacts with standard model particles via quadratic couplings in ϕ, produces "slow" cosmological evolution and oscillating variations of the fundamental constants. We derive limits on the quadratic interactions of ϕ with the photon, electron, and light quarks from measurements of the primordial (4)He abundance produced during big bang nucleosynthesis and recent atomic dysprosium spectroscopy measurements. These limits improve on existing constraints by up to 15 orders of magnitude. We also derive limits on the previously unconstrained linear and quadratic interactions of ϕ with the massive vector bosons from measurements of the primordial (4)He abundance.

8.
Phys Rev Lett ; 114(16): 161301, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25955044

RESUMEN

Any slight variations in the fundamental constants of nature, which may be induced by dark matter or some yet-to-be-discovered cosmic field, would characteristically alter the phase of a light beam inside an interferometer, which can be measured extremely precisely. Laser and maser interferometry may be applied to searches for the linear-in-time drift of the fundamental constants, detection of topological defect dark matter through transient-in-time effects, and for a relic, coherently oscillating condensate, which consists of scalar dark matter fields, through oscillating effects. Our proposed experiments require either minor or no modifications of existing apparatus, and offer extensive reach into important and unconstrained spaces of physical parameters.

9.
Phys Rev Lett ; 113(15): 151301, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375699

RESUMEN

We propose schemes for the detection of topological defect dark matter using pulsars and other luminous extraterrestrial systems via nongravitational signatures. The dark matter field, which makes up a defect, may interact with standard model particles, including quarks and the photon, resulting in the alteration of their masses. When a topological defect passes through a pulsar, its mass, radius, and internal structure may be altered, resulting in a pulsar "quake." A topological defect may also function as a cosmic dielectric material with a distinctive frequency-dependent index of refraction, which would give rise to the time delay of a periodic extraterrestrial light or radio signal, and the dispersion of a light or radio source in a manner distinct to a gravitational lens. A topological defect passing through Earth may alter Earth's period of rotation and give rise to temporary nonzero electric dipole moments for an electron, proton, neutron, nuclei and atoms.

10.
Phys Rev Lett ; 113(8): 081601, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192086

RESUMEN

We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons, and neutrons, by exploiting the static and dynamic parity-nonconserving amplitudes and electric dipole moments they induce in atoms. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by Lorentz-violating standard model extensions. Atomic calculations are performed for H, Li, Na, K, Rb, Cs, Ba(+), Tl, Dy, Fr, and Ra(+). From these calculations and existing measurements in Dy, Cs, and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7 × 10(-15) GeV with an electron, and 3 × 10(-8) GeV with a proton.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...