Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Evolution ; 76(11): 2587-2604, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36128635

RESUMEN

Covarying suites of phenotypic traits, or modules, are increasingly recognized to promote morphological evolution. However, information on how modularity influences flower diversity is rare and lacking for Orchidaceae. Here, we combine high-resolution X-ray computed tomography scanning with three-dimensional geometric morphometrics and phylogenetic comparative methods to test various hypotheses about three-dimensional patterns of flower evolutionary modularity in Malagasy Bulbophyllum orchids and examine rates and modes of module evolution. Based on the four evolutionary modules identified (i.e., sepals, lateral petals, labellum + column-foot, and column-part), our data support the hypothesis that both genetic-developmental and functional adaptive factors shaped evolutionary flower trait covariation in these tropical orchids. In line with "evo-devo" studies, we also find that the labellum evolved independently from the rest of the petal whorl. Finally, we show that modules evolved with different rates, and either in a neutral fashion (only column-part) or under selective constraints, as likely imposed by pollinators. Overall, this study supports current views that modular units can enhance the range and rate of morphological evolution.


Asunto(s)
Flores , Orchidaceae , Filogenia , Flores/anatomía & histología , Orchidaceae/genética , Orchidaceae/anatomía & histología , Fenotipo , Evolución Biológica
2.
Am J Bot ; 108(9): 1595-1611, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34478152

RESUMEN

PREMISE: Celtis is the most species-rich genus of Cannabaceae, an economically important family. Celtis species have been described as wind-pollinated and andromonoecious. However, the andromonoecy of Celtis has been debated because there are reports of monoclinous flowers with non-opening anthers on short filaments. Our objective was to study the floral morphogenesis of Celtis to establish the breeding system and to better understand the developmental patterns that lead to the formation of reduced flowers in the genus. METHODS: Flowers and floral buds of Celtis species were studied using scanning electron microscopy, high-resolution x-ray computed tomography, and light microscopy. RESULTS: All flowers initiate stamens and carpels during early floral development, but either stamens or carpels abort during later stages. Thus, at anthesis, flowers are either functionally pistillate or functionally staminate. In pistillate flowers, stamens abort late and become staminodes with normal-looking anthers. These anthers have no functional endothecium and, in most of the species studied, produce no viable pollen grains. The gynoecium is pseudomonomerous, and its vascularization is similar in the sampled species. In staminate flowers, the gynoecium aborts early resulting in small pistillodes. No vestiges of petals were found. CONCLUSIONS: The species studied are monoecious and not andromonoecious as described earlier. The absence of petals, the carpel and stamen abortion, and the pseudomonomerous gynoecium result in the reduced flowers of Celtis species. The use of high-resolution x-ray computed tomography was essential for a more accurate interpretation of ovary vascularization, confirming the pseudomonomerous structure of the gynoecium.


Asunto(s)
Cannabaceae , Ulmaceae , Flores , Morfogénesis , Fitomejoramiento
3.
New Phytol ; 232(2): 853-867, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309843

RESUMEN

Questions concerning the evolution of complex biological structures are central to the field of evolutionary biology. Yet, still little information is known about the modes and temporal dynamics of three-dimensional (3D) flower shape evolution across the history of clades. Here, we combined high-resolution X-ray computed tomography with 3D geometric morphometrics and phylogenetic comparative methods to test models of whole-flower shape evolution in the orchid family, using an early Late Miocene clade (c. 50 spp.) of Malagasy Bulbophyllum as model system. Based on landmark data of 38 species, our high-dimensional model fitting decisively rejects a purely neutral mode of evolution, suggesting instead that flower shapes evolved towards a primary adaptive optimum. Only a small number of recently evolved species/lineages attained alternative shape optima, resulting in an increased rate of phenotypic evolution. Our findings provide evidence of constrained 3D flower shape evolution in a small-sized clade of tropical orchids, resulting in low rates of phenotypic evolution and uncoupled trait-diversification rates. We hypothesise that this deep imprint of evolutionary constraint on highly complex floral structures might reflect long-term (directional and/or stabilizing) selection exerted by the group's main pollinators (flies).


Asunto(s)
Orchidaceae , Evolución Biológica , Flores , Orchidaceae/genética , Fenotipo , Filogenia
4.
New Phytol ; 226(1): 267-280, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31765023

RESUMEN

Flowers have been hypothesized to contain either modules of attraction and reproduction, functional modules (pollination-effecting parts) or developmental modules (organ-specific). Do pollination specialization and syndromes influence floral modularity? In order to test these hypotheses and answer this question, we focused on the genus Erica: we gathered 3D data from flowers of 19 species with diverse syndromes via computed tomography, and for the first time tested the above-mentioned hypotheses via 3D geometric morphometrics. To provide an evolutionary framework for our results, we tested the evolutionary mode of floral shape, size and integration under the syndromes regime, and - for the first time - reconstructed the high-dimensional floral shape of their most recent common ancestor. We demonstrate that the modularity of the 3D shape of generalist flowers depends on development and that of specialists is linked to function: modules of pollen deposition and receipt in bird syndrome, and access-restriction to the floral reward in long-proboscid fly syndrome. Only size and shape principal component 1 showed multiple-optima selection, suggesting that they were co-opted during evolution to adapt flowers to novel pollinators. Whole floral shape followed an Ornstein-Uhlenbeck (selection-driven) evolutionary model, and differentiated relatively late. Flower shape modularity thus crucially depends on pollinator specialization and syndrome.


Asunto(s)
Ericaceae , Flores , Polinización , Animales , Aves , Polen
5.
Nat Commun ; 10(1): 63, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622247

RESUMEN

Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature.


Asunto(s)
Orchidaceae/fisiología , Oxigenasas/genética , Pigmentación/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Animales , Antocianinas/metabolismo , Abejas/fisiología , Codón sin Sentido , Color , Dípteros/fisiología , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Dominantes/genética , Aptitud Genética , Heterocigoto , Orchidaceae/genética , Oxigenasas/metabolismo , Polinización , Polimorfismo Genético , Selección Genética
6.
Biol Rev Camb Philos Soc ; 92(3): 1365-1388, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27349491

RESUMEN

Ever since the 19th century, the immense arid lands of the Orient, now called the Irano-Turanian (IT) floristic region, attracted the interest of European naturalists with their tremendous plant biodiversity. Covering approximately 30% of the surface of Eurasia (16000000 km2 ), the IT region is one of the largest floristic regions of the world. The IT region represents one of the hotspots of evolutionary and biological diversity in the Old World, and serves as a source of xerophytic taxa for neighbouring regions. Moreover, it is the cradle of the numerous species domesticated in the Fertile Crescent. Over the last 200 years, naturalists outlined different borders for the IT region. Yet, the delimitation and evolutionary history of this area remain one of the least well-understood fields of global biogeography, even though it is crucial to explaining the distribution of life in Eurasia. No comprehensive review of the biogeographical delimitations nor of the role of geological and climatic changes in the evolution of the IT region is currently available. After considering the key role of floristic regions in biogeography, we review the history of evolving concepts about the borders and composition of the IT region over the past 200 years and outline a tentative circumscription for it. We also summarise current knowledge on the geological and climatic history of the IT region. We then use this knowledge to generate specific evolutionary hypotheses to explain how different geological, palaeoclimatic, and ecological factors contributed to range expansion and contraction, thus shaping patterns of speciation in the IT region over time and space. Both historical and ecological biogeography should be applied to understand better the floristic diversification of the region. This will ultimately require evolutionary comparative analyses based on integrative phylogenetic, geological, climatic, ecological, and species distribution studies on the region. Furthermore, an understanding of evolutionary and ecological processes will play a major role in regional planning for protecting biodiversity of the IT region in facing climatic change. With this review, we aim to introduce the IT floristic region to a broader audience of evolutionary, ecological and systematic biologists, thus promoting cutting-edge research on this area and raising awareness of this vast and diverse, yet understudied, part of the world.


Asunto(s)
Biodiversidad , Evolución Biológica , Botánica , Ecología , Medio Oriente , Filogenia , Investigación/tendencias
7.
New Phytol ; 211(4): 1358-70, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27159681

RESUMEN

Obligate mutualisms require filtering mechanisms to prevent their exploitation by opportunists, but ecological contexts and traits facilitating the evolution of such mechanisms are largely unknown. We investigated the evolution of filtering mechanisms in an epiphytic ant-plant symbiotic system in Fiji involving Rubiaceae and dolichoderine ants, using field experiments, metabolomics, X-ray micro-computed tomography (micro-CT) scanning and phylogenetics. We discovered a novel plant reward consisting of sugary sap concealed in post-anthetic flowers only accessible to Philidris nagasau workers that bite through the thick epidermis. In five of the six species of Rubiaceae obligately inhabited by this ant, the nectar glands functioned for 10 d after a flower's sexual function was over. Sugar metabolomics and field experiments showed that ant foraging tracks sucrose levels, which only drop at the onset of fruit development. Ontogenetic analyses of our focal species and their relatives revealed a 25-fold increase in nectary size and delayed fruit development in the ant-rewarding species, and Bayesian analyses of several traits showed the correlated evolution of sugar rewards and symbiosis specialization. Concealed floral nectar forestalls exploitation by opportunists (generalist ants) and stabilizes these obligate mutualisms. Our study pinpoints the importance of partner choice mechanisms in transitions from facultative to obligate mutualisms.


Asunto(s)
Hormigas/fisiología , Conducta de Elección , Flores/química , Recompensa , Rubiaceae/fisiología , Azúcares/análisis , Simbiosis , Animales , Evolución Biológica , Conducta Alimentaria , Frutas/crecimiento & desarrollo , Metabolómica , Néctar de las Plantas , Sacarosa , Microtomografía por Rayos X
8.
Mol Ecol ; 23(24): 6192-205, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25370335

RESUMEN

High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping-by-sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo-pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the 'speciation continuum'.


Asunto(s)
Flores/anatomía & histología , Especiación Genética , Genoma de Planta , Orchidaceae/genética , Polinización , Flores/genética , Genética de Población , Genotipo , Odorantes , Orchidaceae/clasificación , Fenotipo , Polimorfismo Genético , Aislamiento Reproductivo
9.
Curr Biol ; 24(14): 1615-1619, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24998529

RESUMEN

Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae). We studied the pollination process by combining pollination experiments, video monitoring, and detailed analyses of stamen structure and metabolomic composition. We show that the bulbous stamen appendages, which are consumed by various species of passerines (Thraupidae, Fringillidae), are bifunctional during the pollination process. First, the appendages work as bellows organs in a unique pollen expulsion mechanism activated by the passerines. As the birds seize an appendage with their beaks in order to remove it from the flower for consumption, air contained in the appendage's aerenchymatous tissue is pressed into the hollow anther. The resulting air flow causes the expulsion of a pollen jet and the deposition of pollen on the bird's head and beak. Second, the stamen appendages provide a hexose-rich, highly nutritious (15,100 J/g) food body reward for the pollinating passerines. This discovery expands our knowledge of flowering plant pollination systems and provides the first report of highly specialized bellows organs for active pollen transfer in flowering plants. In addition, this is the only known case of a food body reward associated with reproductive structures in the eudicot clade of flowering plants.


Asunto(s)
Flores/fisiología , Melastomataceae/fisiología , Polinización/fisiología , Animales , Aves , Polen
10.
Am J Bot ; 101(2): 225-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24509798

RESUMEN

PREMISE OF THE STUDY: The holoparasitic plant family Rafflesiaceae include the world's largest flowers. Despite their iconic status, relatively little is known about the morphology and development of their flowers. A recent study clarified the organization of the outer (sterile) floral organs, surprisingly revealing that their distinctive floral chambers arose via different developmental pathways in the two major genera of the family. Here, we expand that research to investigate the structure and development of the reproductive organs of Rafflesiaceae. METHODS: Serial sectioning, scanning electron microscopy, and x-ray tomography of floral buds were employed to reconstruct the structure and development of all three Rafflesiaceae genera. KEY RESULTS: Unlike most angiosperms, which form their shoot apex from the primary morphological surface, the shoot apex of Rafflesiaceae instead forms secondarily via internal cell separation (schizogeny) along the distal boundary of the host-parasite interface. Similarly, the radially directed ovarial clefts of the gynoecium forms via schizogeny within solid tissue, and no carpels are initiated from the floral apex. CONCLUSIONS: The development of the shoot apex and gynoecium of Rafflesiaceae are highly unusual. Although secondary formation of the morphological surface from the shoot apex has been documented in other plant groups, secondary derivation of the inner gynoecium surface is otherwise unknown. Both features are likely synapomorphies of Rafflesiaceae. The secondary derivation of the shoot apex may protect the developing floral shoot as it emerges from within dense host tissue. The secondary formation of the ovarial clefts may generate the extensive placental area necessary to produce hundreds of thousands of ovules.


Asunto(s)
Flores/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Óvulo Vegetal/crecimiento & desarrollo
11.
PLoS One ; 8(9): e75295, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086499

RESUMEN

Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be undertaken in areas ranging from morphology to systems biology.


Asunto(s)
Flores/ultraestructura , Imagenología Tridimensional/métodos , Tomografía por Rayos X/métodos , Arabidopsis , Medios de Contraste/química , Microscopía Electrónica de Transmisión , Compuestos Organometálicos , Tetróxido de Osmio , Ácido Fosfotúngstico , Especificidad de la Especie , Tartratos
12.
PLoS One ; 8(8): e72688, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967332

RESUMEN

BACKGROUND: The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllumbicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. METHODS: Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. FINDINGS: Selfing variants possess a suberect ('displaced') rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. CONCLUSIONS: Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the investigation of an organ that apparently re-gained its 'primordial function' of being penetrated by pollen tubes.


Asunto(s)
Flores/citología , Flores/fisiología , Orchidaceae/citología , Orchidaceae/fisiología , Polinización/fisiología , Flores/anatomía & histología , Flores/ultraestructura , Orchidaceae/anatomía & histología , Tubo Polínico/anatomía & histología , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA