Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(14): 9853-9865, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37418196

RESUMEN

Novel gamma-aminobutyric acid receptor (GABAAR) ligands structurally related to imidazobenzodiazepine MIDD0301 were synthesized using spiro-amino acid N-carboxyanhydrides (NCAs). These compounds demonstrated increased resistance to phase 2 metabolism and avoided the formation of a 6H isomer. Compound design was guided by molecular docking using the available crystal structure of the α1ß3γ2 GABAAR and correlated with in vitro binding data. The carboxylic acid containing GABAAR ligands have high aqueous solubility, low permeability, and low cell toxicity. The inability of GABAAR ligands to cross the blood-brain barrier was confirmed in vivo by the absence of sensorimotor inhibition. Pharmacological activities at lung GABAARs were demonstrated by ex vivo relaxation of guinea pig airway smooth muscle and reduction of methacholine-induced airway hyperresponsiveness (AHR) in conscious mice. We identified bronchodilator 5c with an affinity of 9 nM for GABAARs that was metabolically stable in the presence of human and mouse microsomes.


Asunto(s)
Broncodilatadores , Receptores de GABA-A , Ratones , Humanos , Animales , Cobayas , Receptores de GABA-A/metabolismo , Broncodilatadores/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Ácido gamma-Aminobutírico
2.
Drug Dev Res ; 83(4): 979-992, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35246861

RESUMEN

MIDD0301 is being developed as an oral drug to relax airway smooth muscle (ASM) and reduce lung inflammation in asthma. We report a comparative study of MIDD0301 and its S isomer (MIDD0301S), and found that the compounds have equivalent affinity for γ-aminobutyric acid type A receptor (GABAA R) expressed in rat brain, with half maximal inhibitory concentration values of 25.1 and 26.3 nM for the S and R enantiomers, respectively. Both compounds relaxed substance P contracted ASM within 30 min and neither enantiomer revealed affinity to 48 receptors in an off-target screen. Both enantiomers reduced airway hyperresponsiveness (AHR) with nebulized and oral dosing in two mouse models of bronchoconstriction. In A/J mice, which are very sensitive to methacholine-induced bronchoconstriction, we observed reduction of AHR at 10.8 mg/kg MIDD0301 and 15 mg/kg MIDD0301S. Using oral administration, 100 mg/kg/day for 3 days of either enantiomer was sufficient to reduce AHR. In a model of severe airway inflammation induced by interferon-γ and lipopolysaccharide (LPS), we observed reduction of AHR at 7.2 mg/kg for both enantiomers using nebulized administration, and at 100 mg/kg for oral administration. MIDD0301 and MIDD0301S did not undergo Phase I metabolism. Glucuronidation was observed for both compounds, whereas only MIDD0301 formed the corresponding glucoside in the presence of kidney microsomes. Pharmacokinetic analysis identified glucuronides as the major metabolite with concentrations up to 20-fold more than the parent compound. MIDD0301 glucuronide and MIDD0301 taurine bind GABAA Rs, although 10-fold weaker than MIDD0301. In mouse blood, the taurine adduct was only observed for MIDD0301. Overall, both compounds exhibited similar receptor binding and pharmacodynamic properties with subtle differences in metabolism and greater oral availability and blood concentrations of MIDD0301S.


Asunto(s)
Asma , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Azepinas , Imidazoles , Ratones , Ratas , Receptores de GABA , Taurina , Ácido gamma-Aminobutírico
3.
ACS Pharmacol Transl Sci ; 5(2): 80-88, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35187417

RESUMEN

We report the modification of MIDD0301, an imidazodiazepine GABAA receptor (GABAAR) ligand, using two alkyl substituents. We developed PI310 with a 6-(4-phenylbutoxy)hexyl chain as used in the long-acting ß2-agonist salmeterol and PI320 with a poly(ethylene glycol) chain as used to improve the brain:plasma ratio of naloxegol, a naloxone analogue. Both imidazodiazepines showed affinity toward the GABAAR binding site of clonazepam, with IC50 values of 576 and 242 nM, respectively. Molecular docking analysis, using the available α1ß3γ2 GABAAR structural data, suggests binding of the diazepine core between the α1+/γ2- interface, whereas alkyl substituents are located outside the binding site and thus interact with the protein surface and solvent molecules. The physicochemical properties of these compounds are very different. The solubility of PI310 is low in water. PEGylation of PI320 significantly improves aqueous solubility and cell permeability. Neither compound is toxic in HEK293 cells following exposure at >300 µM for 18 h. Ex vivo studies using guinea pig tracheal rings showed that PI310 was unable to relax the constricted airway smooth muscle. In contrast, PI320 induced muscle relaxation at organ bath concentrations as low as 5 µM, with rapid onset (15 min) at 25 µM. PI320 also reduced airway hyper-responsiveness in vivo in a mouse model of steroid-resistant lung inflammation induced by intratracheal challenge with INFγ and lipopolysaccharide (LPS). At nebulized doses of 7.2 mg/kg, PI320 and albuterol were equally effective in reducing airway hyper-responsiveness. Ten minutes after nebulization, the lung concentration of PI320 was 50-fold that of PI310, indicating superior availability of PI320 when nebulized as an aqueous solution. Overall, PI320 is a promising inhaled drug candidate to quickly relax airway smooth muscle in bronchoconstrictive disorders, such as asthma. Future studies will evaluate the pharmacokinetic/pharmacodynamic properties of PI320 when administered orally.

4.
Curr Drug Metab ; 22(14): 1114-1123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34856893

RESUMEN

BACKGROUND: MIDD0301 is an oral asthma drug candidate that binds GABAA receptors on airway smooth muscle and immune cells. OBJECTIVE: The objective of this study is to identify and quantify MIDD0301 metabolites in vitro and in vivo and determine the pharmacokinetics of oral, IP, and IV administered MIDD0301. METHODS: In vitro conversion of MIDD0301 was performed using liver and kidney microsomes/S9 fractions followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A LC-MS/MS method was developed using synthesized standards to quantify MIDD0301 and its metabolites in urine and feces. Blood, lung, and brain were harvested from animals that received MIDD0301 by oral, IP, and IV administration, followed by LCMS/ MS quantification. Imaging mass spectrometry was used to demonstrate the presence of MIDD0301 in the lung after oral administration. RESULTS: MIDD0301 is stable in the presence of liver and kidney microsomes and S9 fractions for at least two hours. MIDD0301 undergoes conversion to the corresponding glucuronide and glucoside in the presence of conjugating cofactors. For IP and IV administration, unconjugated MIDD0301 together with significant amounts of MIDD0301 glucoside and MIDD0301 taurine were found in urine and feces. Less conjugation was observed following oral administration, with MIDD0301 glucuronide being the main metabolite. Pharmacokinetic quantification of MIDD0301 in blood, lung, and brain showed very low levels of MIDD0301 in the brain after oral, IV, or IP administration. The drug half-life in these tissues ranged between 4-6 hours for IP and oral and 1-2 hours for IV administration. Imaging mass spectrometry demonstrated that orally administered MIDD0301 distributes uniformly in the lung parenchyma. CONCLUSION: MIDD0301 undergoes no phase I and moderate phase II metabolism.


Asunto(s)
Antiasmáticos/farmacocinética , Azepinas/farmacocinética , Imidazoles/farmacocinética , Riñón/metabolismo , Microsomas Hepáticos/metabolismo , Administración Intravenosa , Administración Oral , Animales , Antiasmáticos/administración & dosificación , Azepinas/administración & dosificación , Cromatografía Liquida , Perros , Femenino , Humanos , Imidazoles/administración & dosificación , Inyecciones Intraperitoneales , Pulmón/metabolismo , Ratones , Microsomas/metabolismo , Ratas , Espectrometría de Masas en Tándem , Distribución Tisular
5.
ACS Pharmacol Transl Sci ; 3(6): 1381-1390, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33344908

RESUMEN

We report the relaxation of methacholine-constricted airways with nebulized MIDD0301, a positive allosteric γ-aminobutyric acid type A receptor (GABAAR) modulator. The therapeutic efficacy of nebulized MIDD0301 in reducing airway resistance was investigated in spontaneous breathing mice using a whole-body plethysmograph and in unconscious mice using a forced oscillation technique. Prophylactic nebulized MIDD0301 reduced subsequent methacholine-induced bronchoconstriction in ovalbumin and house dust mite allergic asthma models and in normal mice. Nebulized MIDD0301 exhibited comparable or better therapeutic potency compared to nebulized albuterol and oral montelukast. Prophylactic nebulized MIDD0301 was also effective in reducing bronchoconstriction, comparable to nebulized albuterol or fluticasone, in a steroid resistant asthma mouse model induced by intratracheal installation of lipopolysaccharide and interferon-gamma. Oral dexamethasone was ineffective in this model. Nebulized MIDD0301 was also effective in reversing bronchospasm when dosed after methacholine challenge comparable to albuterol. Pharmacokinetic studies showed that about 0.06% of nebulized MIDD0301 entered the mouse lung when using a whole body plethysmograph and therapeutic levels were sustained in the lung for at least 25 min. Consistent with previous reports on orally dosed MIDD0301, high doses of nebulized MIDD0301 resulted in minimal brain exposure and thus no observable adverse sensorimotor or respiratory depression effects occurred. In addition, no adverse cardiovascular effects were observed following 100 mg/kg i.p. dosing. These results further demonstrate that charged imidazodiazepine MIDD0301 can selectively target lung GABAAR without adverse motor, cardiovascular, or respiratory effects and inhaled dosing is effective in reducing bronchoconstriction in allergen and infectious lung inflammation.

6.
Org Process Res Dev ; 24(8): 1467-1476, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32952391

RESUMEN

We report an improved and scalable synthesis of MIDD0301, a positive GABAA receptor modulator that is under development as oral and inhaled treatments for asthma. In contrast to other benzodiazepines in clinical use, MIDD0301 is a chiral compound that has limited brain absorption. The starting material to generate MIDD0301 is 2-amino-5-bromo-2'-fluorobenzophenone, which has a non-basic nitrogen due to electron withdrawing substituents in the ortho and para positions, reducing its reactivity towards activated carboxylic acids. Investigations of peptide coupling reagents on multigram scale resulted in moderate yields due to incomplete conversions. Secondly, basic conditions used for the formation of the seven-membered 1,4-diazepine ring resulted in racemization of the chiral center. We found that neutral conditions comparable to the pKa of the primary amine were sufficient to support the formation of the intramolecular imine but did not enable the simultaneous removal of the protecting group. Both difficulties were overcome with the application of the N-carboxyanhydride of D-alanine. Activated in the presence of acid, this compound reacted with non-basic 2-amino-5-bromo-2'-fluorobenzophenone and formed the 1,4-diazepine upon neutralization with triethylamine. Carefully designed workup procedures and divergent solubility of the synthetic intermediates in solvents and solvent combinations were utilized to eliminate the need for column chromatography. To improve compatibility with large scale reactors, temperature-controlled slow addition of reagents generated the imidazodiazepine at -20 °C. All intermediates were isolated with a purity of >97% and impurities were identified and quantified. After the final hydrolysis step, MIDD0301 was isolated in a 44% overall yield and purity of 98.9% after recrystallization. The enantiomeric excess was greater than 99.0%.

7.
Molecules ; 25(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854311

RESUMEN

Analgesic and anti-inflammatory properties mediated by the κ opioid receptor (KOR) have been reported for oxadiazole imidazodiazepines. Affinities determined by radioligand competition assays of more than seventy imidazodiazepines using cell homogenates from HEK293 cells that overexpress KOR, µ opioid receptor (MOR), and δ opioid receptor (DOR) are presented. Affinities to synaptic, benzodiazepine-sensitive receptors (BZR) were determined with rat brain extract. The highest affinity for KOR was recorded for GL-I-30 (Ki of 27 nM) and G-protein recruitment was observed with an EC50 of 32 nM. Affinities for MOR and DOR were weak for all compounds. Ester and amide imidazodiazepines were among the most active KOR ligands but also competed with 3H-flunitrazepam for brain extract binding, which is mediated predominately by gamma aminobutyric acid type A receptors (GABAAR) of the α1-3ß2-3γ1-2 subtypes. Imidazodiazepines with carboxylic acid and primary amide groups did not bind KOR but interacted strongly with GABAARs. Pyridine substitution reduced KOR affinity. Oxadiazole imidazodiazepines exhibited good KOR binding and interacted weakly with BZR, whereas oxazole imidazodiazepines were more selective towards BZR. Compounds that lack the imidazole moiety, the pendent phenyl, or pyridine substitutions exhibited insignificant KOR affinities. It can be concluded that a subset of imidazodiazepines represents novel KOR ligands with high selectivity among opioid receptors.


Asunto(s)
Azepinas , Agonistas de Receptores de GABA-A , Receptores de GABA-A , Receptores Opioides delta , Receptores Opioides kappa , Receptores Opioides mu , Animales , Azepinas/química , Azepinas/farmacología , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacología , Células HEK293 , Humanos , Unión Proteica , Receptores de GABA-A/química , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/química , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/química , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Relación Estructura-Actividad
8.
ACS Chem Neurosci ; 11(13): 2019-2030, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32511908

RESUMEN

The goal of this research is the identification of new treatments for neuropathic pain. We characterized the GABAergic system of immortalized mouse and human microglia using electrophysiology and qRT-PCR. Cells from both species exhibited membrane current changes in response to γ-aminobutyric acid, with an EC50 of 260 and 1940 nM, respectively. Human microglia expressed high levels of the γ-aminobutyric acid type A receptor (GABAAR) α3 subunit, which can assemble with ß1 and γ2/δ subunits to form functional GABAARs. Mouse microglia contained α2, α3, and α5, in addition to ß1-3, γ1-2, and δ, mRNA, enabling a more diverse array of GABAARs than human microglia. Benzodiazepines are well-established modulators of GABAAR activity, prompting a screen of a library of diverse benzodiazepines in microglia for cellular effects. Several active compounds were identified by reduction of nitric oxide (NO) in interferon gamma and lipopolysaccharide activated microglia. However, further investigation with GABAAR antagonists flumazenil, picrotoxin, and bicuculline demonstrated that GABAARs were not linked to the NO response. A screen of 48 receptors identified the κ-opioid receptor and to a lesser extent the µ-opioid receptor as molecular targets, with opioid receptor antagonist norbinaltorphimine reversing benzodiazepine induced reduction of microglial NO. Functional assays identified the downregulation of inducible NO synthase as the mode of action of imidazodiazepines MP-IV-010 and GL-IV-03. Like other κ-opioid receptor agonists, GL-IV-03 reduced the agitation response in both phases of the formalin nociception test. However, unlike other κ-opioid receptor agonists, MP-IV-010 and GL-IV-03 did not impair sensorimotor coordination in mice. Thus, MP-IV-010 and GL-IV-03 represent a new class of nonsedative drug candidates for inflammatory pain.


Asunto(s)
Microglía , Óxido Nítrico , Animales , Antagonistas de Receptores de GABA-A/farmacología , Ratones , Dolor , Receptores Opioides kappa
9.
Mol Pharm ; 17(4): 1182-1192, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32069056

RESUMEN

We describe the effects of pH on the structure and bioavailability of MIDD0301, an oral lead compound for asthma. MIDD0301 interacts with peripheral GABAA receptors to reduce lung inflammation and airway smooth muscle constriction. The structure of MIDD0301 combines basic imidazole and carboxylic acid function in the same diazepine scaffold, resulting in high solubility at neutral pH. Furthermore, we demonstrated that MIDD0301 can interconvert between a seven-membered ring structure at neutral pH and an acyclic compound at or below pH 3. Both structures have two stable conformers in solution that can be observed by 1H NMR at room temperature. Kinetic analysis showed opening and closing of the seven-membered ring of MIDD0301 at gastric and intestinal pH, occurring with different rate constants. However, in vivo studies showed that the interconversion kinetics are fast enough to yield similar MIDD0301 blood and lung concentrations for neutral and acidic formulations. Importantly, acidic and neutral formulations of MIDD0301 exhibit high lung distribution with low concentrations in brain. These findings demonstrate that MIDD0301 interconverts between stable structures at neutral and acidic pH without changes in bioavailability, further supporting its formulation as an oral asthma medication.


Asunto(s)
Azepinas/química , Azepinas/farmacocinética , Benzodiazepinas/farmacocinética , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacocinética , Imidazoles/química , Imidazoles/farmacocinética , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Azepinas/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Disponibilidad Biológica , Encéfalo/metabolismo , Ácidos Carboxílicos/farmacología , Femenino , Concentración de Iones de Hidrógeno , Imidazoles/farmacología , Cinética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Músculo Liso/metabolismo , Receptores de GABA-A/metabolismo , Solubilidad , Estómago
11.
Basic Clin Pharmacol Toxicol ; 125(1): 75-84, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30694594

RESUMEN

We report a 28-day repeat dose immunotoxicity evaluation of investigational drug MIDD0301, a novel oral asthma drug candidate that targets gamma amino butyric acid type A receptors (GABAA R) in the lung. The study design employed oral administration of mice twice daily throughout the study period with 100 mg/kg MIDD0301 mixed in peanut butter. Compound dosing did not reveal signs of general toxicity as determined by animal weight, organ weight or haematology. Peanut butter plus test drug (in addition to ad libitum standard rodent chow) did not affect weight gain in the adult mice, in contrast to weight loss in 5 mg/kg prednisone-treated mice. Spleen and thymus weights were unchanged in MIDD0301-treated mice, but prednisone significantly reduced the weight of those organs over the 28-day dosing. Similarly, no differences in spleen or thymus histology were observed following MIDD0301 treatment, but prednisone treatment induced morphological changes in the spleen. The number of small intestine Peyer's patches was not affected by MIDD0301 treatment, an important factor for orally administered drugs. Circulating lymphocyte, monocyte and granulocyte numbers were unchanged in the MIDD0301-treated animals, whereas differential lymphocyte numbers were reduced in prednisone-treated animals. MIDD0301 treatment did not alter IgG antibody responses to dinitrophenyl following dinitrophenyl-keyhole limpet haemocyanin immunization, indicating that systemic humoral immune function was not affected. Taken together, these studies show that repeated daily administration of MIDD0301 is safe and not associated with adverse immunotoxicological effects in mice.


Asunto(s)
Antiinflamatorios/administración & dosificación , Asma/tratamiento farmacológico , Azepinas/administración & dosificación , Drogas en Investigación/administración & dosificación , Agonistas de Receptores de GABA-A/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Imidazoles/administración & dosificación , Tolerancia Inmunológica/efectos de los fármacos , Adyuvantes Inmunológicos/administración & dosificación , Administración Oral , Animales , Antiinflamatorios/efectos adversos , Asma/sangre , Asma/inmunología , Azepinas/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Drogas en Investigación/efectos adversos , Femenino , Agonistas de Receptores de GABA-A/efectos adversos , Hemocianinas/administración & dosificación , Hemocianinas/inmunología , Compuestos Heterocíclicos con 3 Anillos/efectos adversos , Humanos , Imidazoles/farmacología , Recuento de Leucocitos , Masculino , Ratones , Prednisona/administración & dosificación , Prednisona/efectos adversos , Pérdida de Peso
12.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L385-L390, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30489155

RESUMEN

Airway smooth muscle (ASM) cells express GABA A receptors (GABAARs), and previous reports have demonstrated that GABAAR activators relax ASM. However, given the activity of GABAARs in central nervous system inhibitory neurotransmission, concern exists that these activators may lead to undesirable sedation. MIDD0301 is a novel imidazobenzodiazepine and positive allosteric modulator of the GABAAR with limited brain distribution, thus eliminating the potential for sedation. Here, we demonstrate that MIDD0301 relaxes histamine-contracted guinea pig ( P < 0.05, n = 6-9) and human ( P < 0.05, n = 6-10) tracheal smooth muscle ex vivo in organ bath experiments, dilates mouse peripheral airways ex vivo in precision-cut lung-slice experiments ( P < 0.001, n = 16 airways from three mice), and alleviates bronchoconstriction in vivo in mice, as assessed by the forced-oscillation technique ( P < 0.05, n = 6 mice). Only trace concentrations of the compound were detected in the brains of mice after inhalation of nebulized 5 mM MIDD0301. Given its favorable pharmacokinetic properties and demonstrated ability to relax ASM in a number of clinically relevant experimental paradigms, MIDD0301 is a promising drug candidate for bronchoconstrictive diseases, such as asthma.


Asunto(s)
Asma/tratamiento farmacológico , Barrera Hematoencefálica/efectos de los fármacos , GABAérgicos/farmacología , Receptores de GABA-A/efectos de los fármacos , Animales , Cobayas , Humanos , Ligandos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Receptores de GABA-A/metabolismo , Tráquea/efectos de los fármacos , Tráquea/metabolismo
13.
Mol Pharm ; 15(5): 1766-1777, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29578347

RESUMEN

We describe lead compound MIDD0301 for the oral treatment of asthma based on previously developed positive allosteric α5ß3γ2 selective GABAA receptor (GABAAR) ligands. MIDD0301 relaxed airway smooth muscle at single micromolar concentrations as demonstrated with ex vivo guinea pig tracheal rings. MIDD0301 also attenuated airway hyperresponsiveness (AHR) in an ovalbumin murine model of asthma by oral administration. Reduced numbers of eosinophils and macrophages were observed in mouse bronchoalveolar lavage fluid without changing mucous metaplasia. Importantly, lung cytokine expression of IL-17A, IL-4, and TNF-α were reduced for MIDD0301-treated mice without changing antiinflammatory cytokine IL-10 levels. Automated patch clamp confirmed amplification of GABA induced current mediated by α1-3,5ß3γ2 GABAARs in the presence of MIDD0301. Pharmacodynamically, transmembrane currents of ex vivo CD4+ T cells from asthmatic mice were potentiated by MIDD0301 in the presence of GABA. The number of CD4+ T cells observed in the lung of MIDD0301-treated mice were reduced by an oral treatment of 20 mg/kg b.i.d. for 5 days. A half-life of almost 14 h was demonstrated by pharmacokinetic studies (PK) with no adverse CNS effects when treated mice were subjected to sensorimotor studies using the rotarod. PK studies also confirmed very low brain distribution. In conclusion, MIDD0301 represents a safe and improved oral asthma drug candidate that relaxes airway smooth muscle and attenuates inflammation in the lung leading to a reduction of AHR at a dosage lower than earlier reported GABAAR ligands.


Asunto(s)
Asma/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Pulmón/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Receptores de GABA-A/metabolismo , Animales , Asma/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Líquido del Lavado Bronquioalveolar/química , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Constricción , Citocinas/metabolismo , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Femenino , Cobayas , Inflamación/metabolismo , Ligandos , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Liso/metabolismo , Ovalbúmina/metabolismo , Hipersensibilidad Respiratoria/metabolismo
14.
Mol Pharm ; 14(6): 2088-2098, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28440659

RESUMEN

We describe pharmacokinetic and pharmacodynamic properties of two novel oral drug candidates for asthma. Phenolic α4ß3γ2 GABAAR selective compound 1 and acidic α5ß3γ2 selective GABAAR positive allosteric modulator compound 2 relaxed airway smooth muscle ex vivo and attenuated airway hyperresponsiveness (AHR) in a murine model of asthma. Importantly, compound 2 relaxed acetylcholine contracted human tracheal airway smooth muscle strips. Oral treatment of compounds 1 and 2 decreased eosinophils in bronchoalveolar lavage fluid in ovalbumin sensitized and challenged mice, thus exhibiting anti-inflammatory properties. Additionally, compound 1 reduced the number of lung CD4+ T lymphocytes and directly modulated their transmembrane currents by acting on GABAARs. Excellent pharmacokinetic properties were observed, including long plasma half-life (up to 15 h), oral availability, and extremely low brain distribution. In conclusion, we report the selective targeting of GABAARs expressed outside the brain and demonstrate reduction of AHR and airway inflammation with two novel orally available GABAAR ligands.


Asunto(s)
Asma/patología , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Citometría de Flujo , Humanos , Pulmón , Masculino , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Receptores de GABA/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Porcinos
15.
Eur J Med Chem ; 126: 550-560, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27915170

RESUMEN

We describe the synthesis of analogs of XHE-III-74, a selective α4ß3γ2 GABAAR ligand, shown to relax airway smooth muscle ex vivo and reduce airway hyperresponsiveness in a murine asthma model. To improve properties of this compound as an asthma therapeutic, a series of analogs with a deuterated methoxy group in place of methoxy group at C-8 position was evaluated for isotope effects in preclinical assays; including microsomal stability, cytotoxicity, and sensorimotor impairment. The deuterated compounds were equally or more metabolically stable than the corresponding non-deuterated analogs and increased sensorimotor impairment was observed for some deuterated compounds. Thioesters were more cytotoxic in comparison to other carboxylic acid derivatives of this compound series. The most promising compound 16 identified from the in vitro screens also strongly inhibited smooth muscle constriction in ex vivo guinea pig tracheal rings. Smooth muscle relaxation, determined by reduction of airway hyperresponsiveness with a murine ovalbumin sensitized and challenged model, showed that 16 was efficacious at low methacholine concentrations. However, this effect was limited due to suboptimal pharmacokinetics of 16. Based on these findings, further analogs of XHE-III-74 will be investigated to improve in vivo metabolic stability while retaining the efficacy at lung tissues involved in asthma pathology.


Asunto(s)
Asma/tratamiento farmacológico , Benzodiazepinas/farmacología , Receptores de GABA-A/metabolismo , Animales , Benzodiazepinas/química , Benzodiazepinas/uso terapéutico , Constricción Patológica/tratamiento farmacológico , Deuterio/farmacología , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Cobayas , Cloruro de Metacolina/farmacología , Ratones , Hipersensibilidad Respiratoria/tratamiento farmacológico , Relación Estructura-Actividad , Ésteres del Ácido Sulfúrico/farmacología , Tráquea/efectos de los fármacos , Tráquea/patología
16.
J Med Chem ; 59(23): 10800-10806, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27933953

RESUMEN

1,4-Benzodiazepines are used in the treatment of anxiety disorders but have limited long-term use due to adverse effects. HZ-166 (2) has been shown to have anxiolytic-like effects with reduced sedative/ataxic liabilities. A 1,3-oxazole KRM-II-81 (9) was discovered from a series of six bioisosteres with significantly improved pharmacokinetic and pharmacodynamic properties as compared to 2. Oxazole 9 was further characterized and exhibited improved anxiolytic-like effects in a mouse marble burying assay and a rat Vogel conflict test.


Asunto(s)
Ansiolíticos/farmacología , Benzodiazepinas/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Imidazoles/farmacología , Oxazoles/farmacología , Receptores de GABA-A/metabolismo , Animales , Ansiolíticos/química , Ansiolíticos/metabolismo , Ansiedad/tratamiento farmacológico , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Relación Dosis-Respuesta a Droga , Epilepsia/tratamiento farmacológico , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/metabolismo , Células HEK293 , Humanos , Imidazoles/química , Imidazoles/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos , Estructura Molecular , Oxazoles/química , Oxazoles/metabolismo , Dolor/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
17.
Mol Pharm ; 13(6): 2026-38, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27120014

RESUMEN

Recent studies have demonstrated that subtype-selective GABAA receptor modulators are able to relax precontracted human airway smooth muscle ex vivo and reduce airway hyper-responsiveness in mice upon aerosol administration. Our goal in this study was to investigate systemic administration of subtype-selective GABAA receptor modulators to alleviate bronchoconstriction in a mouse model of asthma. Expression of GABAA receptor subunits was identified in mouse lungs, and the effects of α4-subunit-selective GABAAR modulators, XHE-III-74EE and its metabolite XHE-III-74A, were investigated in a murine model of asthma (ovalbumin sensitized and challenged BALB/c mice). We observed that chronic treatment with XHE-III-74EE significantly reduced airway hyper-responsiveness. In addition, acute treatment with XHE-III-74A but not XHE-III-74EE decreased airway eosinophilia. Immune suppressive activity was also shown in activated human T-cells with a reduction in IL-2 expression and intracellular calcium concentrations [Ca(2+)]i in the presence of GABA or XHE-III-74A, whereas XHE-III-74EE showed only partial reduction of [Ca(2+)]i and no inhibition of IL-2 secretion. However, both compounds significantly relaxed precontracted tracheal rings ex vivo. Overall, we conclude that the systemic delivery of a α4-subunit-selective GABAAR modulator shows good potential for a novel asthma therapy; however, the pharmacokinetic properties of this class of drug candidates have to be improved to enable better beneficial systemic pharmacodynamic effects.


Asunto(s)
Asma/tratamiento farmacológico , Benzodiazepinas/farmacología , Receptores de GABA-A/metabolismo , Animales , Asma/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Cobayas , Humanos , Interleucina-2/metabolismo , Células Jurkat , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ovalbúmina/administración & dosificación , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Xenopus laevis
18.
Int J Med Chem ; 2015: 430248, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26682068

RESUMEN

An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2'F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5ß2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1ß2γ2, α2ß2γ2, and α3ß2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...