Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1069968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875076

RESUMEN

In search for immunological correlates of protection against acute coronavirus disease 2019 (COVID-19) there is a need for high through-put assays for cell-mediated immunity (CMI) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We established an interferon-γ release assay -based test for detection of CMI against SARS-CoV-2 spike (S) or nucleocapsid (NC) peptides. Blood samples obtained from 549 healthy or convalescent individuals were measured for interferon-γ (IFN-γ) production after peptide stimulation using a certified chemiluminescence immunoassay. Test performance was calculated applying cutoff values with the highest Youden indices in receiver-operating-characteristics curve analysis and compared to a commercially available serologic test. Potential confounders and clinical correlates were assessed for all test systems. 522 samples obtained from 378 convalescent in median 298 days after PCR-confirmed SARS-CoV-2 infection and 144 healthy control individuals were included in the final analysis. CMI testing had a sensitivity and specificity of up to 89% and 74% for S peptides and 89% and 91% for NC peptides, respectively. High white blood cell counts correlated negatively with IFN-γ responses but there was no CMI decay in samples obtained up to one year after recovery. Severe clinical symptoms at time of acute infection were associated with higher measures of adaptive immunity and reported hair loss at time of examination. This laboratory-developed test for CMI to SARS-CoV-2 NC peptides exhibits excellent test performance, is suitable for high through-put routine diagnostics, and should be evaluated for clinical outcome prediction in prospective pathogen re-exposure.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ensayos de Liberación de Interferón gamma , Estudios Prospectivos , Inmunidad Celular
2.
J Am Soc Nephrol ; 34(3): 369-373, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735391

RESUMEN

SIGNIFICANCE STATEMENT: Membranous nephropathy (MN) is an autoimmune kidney disease characterized by immune deposits in the glomerular basement membrane. Circulating anti-phospholipase A 2 receptor 1 (PLA 2 R1) antibodies are detectable in 70%-80% of patients with MN, but experimental evidence of pathogenicity has been lacking. This study demonstrates the pathogenicity of human anti-PLA 2 R1 antibodies in minipigs, a model for MN that intrinsically expresses PLA 2 R1 on podocytes. After passive transfer of human anti-PLA 2 R1 antibody-containing plasma from patients with PLA 2 R1-associated MN to minipigs, antibodies were detected in the minipig glomeruli, but not in response to plasma from healthy controls. The minipigs developed histomorphological characteristics of MN, local complement activation in the glomeruli, and low-level proteinuria within 7 days, showing that human anti-PLA 2 R1 antibodies are pathogenic. BACKGROUND: Primary membranous nephropathy (MN) is an autoimmune kidney disease in which immune complexes are deposited beneath the epithelium in the glomeruli. The condition introduces a high risk for end-stage kidney disease. Seventy percent to 80% of patients with MN have circulating antibodies against phospholipase A 2 receptor 1 (PLA 2 R1), and levels correlate with treatment response and prognosis. However, experimental evidence that human anti-PLA 2 R1 antibodies induce MN has been elusive. METHODS: In passive transfer experiments, minipigs received plasma or purified IgG from patients with PLA 2 R1-associated MN or from healthy controls. Anti-PLA 2 R1 antibodies and proteinuria were monitored using Western blot, ELISA, and Coomassie staining. Kidney tissues were analyzed using immunohistochemistry, immunofluorescence, electron microscopy, and proteomic analyses. RESULTS: Minipigs, like humans, express PLA 2 R1 on podocytes. Human anti-PLA 2 R1 antibodies bound to minipig PLA 2 R1 in vitro and in vivo . Passive transfer of human anti-PLA 2 R1 antibodies from patients with PLA 2 R1-associated MN to minipigs led to histological characteristics of human early-stage MN, activation of components of the complement cascade, and low levels of proteinuria. We observed development of an autologous, later phase of disease. CONCLUSIONS: A translational approach from humans to minipigs showed that human anti-PLA 2 R1 antibodies are pathogenic in MN, although in the heterologous phase of disease only low-level proteinuria developed.


Asunto(s)
Enfermedades Autoinmunes , Glomerulonefritis Membranosa , Humanos , Animales , Porcinos , Porcinos Enanos/metabolismo , Proyectos Piloto , Virulencia , Proteómica , Autoanticuerpos , Proteinuria , Receptores de Fosfolipasa A2
3.
Nat Commun ; 12(1): 4706, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349112

RESUMEN

During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens.


Asunto(s)
Quimerismo , Feto/inmunología , Inmunidad Materno-Adquirida/inmunología , Infecciones/inmunología , Animales , Médula Ósea/metabolismo , Epigenoma , Femenino , Sangre Fetal/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Lactante , Ratones , Monocitos/citología , Embarazo , Linfocitos T/citología
4.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398860

RESUMEN

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing disease mainly in immunocompromised patients or after congenital infection. HCMV infection of the respiratory tract leads to pneumonitis in the immunocompromised host, which is often associated with a bad clinical course. The related mouse cytomegalovirus (MCMV) likewise exhibits a distinct tropism for the lung and thus provides an elegant model to study host-pathogen interaction. Accordingly, fundamental features of cytomegalovirus (CMV) pneumonitis have been discovered in mice that correlate with clinical data obtained from humans. Recent studies have provided insight into MCMV cell tropism and localized inflammation after infection of the respiratory tract. Accordingly, the nodular inflammatory focus (NIF) has been identified as the anatomical correlate of immune control in lungs. Several hematopoietic cells involved in antiviral immunity reside in NIFs and their key effector molecules have been deciphered. Here, we review what has been learned from the mouse model with focus on the microanatomy of infection sites and antiviral immunity in MCMV pneumonitis.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Neumonía Viral/inmunología , Neumonía Viral/virología , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad , Tropismo Viral
5.
Sci Rep ; 8(1): 14823, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287927

RESUMEN

Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.


Asunto(s)
Análisis Químico de la Sangre/métodos , ADN Viral/sangre , Pruebas Diagnósticas de Rutina/métodos , Hepatitis Viral Animal/diagnóstico , Infecciones por Herpesviridae/veterinaria , Muromegalovirus/aislamiento & purificación , Enfermedades de los Roedores/diagnóstico , Animales , Hepatitis Viral Animal/virología , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/virología , Pruebas de Función Hepática , Ratones Endogámicos C57BL , Enfermedades de los Roedores/virología , Transaminasas/sangre
6.
PLoS Pathog ; 14(8): e1007252, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30153311

RESUMEN

Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Infecciones por Herpesviridae/inmunología , Interferón gamma/metabolismo , Muromegalovirus/inmunología , Neumonía/virología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ADN/genética , Infecciones por Herpesviridae/complicaciones , Infecciones por Herpesviridae/patología , Inmunidad Celular/fisiología , Interferón gamma/genética , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/inmunología , Neumonía/patología
7.
Mol Cancer Res ; 16(3): 496-507, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29330294

RESUMEN

Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative in vitro and in vivo model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. In vivo growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor.Implications: High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. Mol Cancer Res; 16(3); 496-507. ©2018 AACR.


Asunto(s)
Modelos Animales de Enfermedad , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Genotipaje/métodos , Xenoinjertos , Humanos , Masculino , Ratones , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
8.
N Engl J Med ; 374(17): 1647-60, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25830326

RESUMEN

BACKGROUND: The replication-competent recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing a Zaire ebolavirus (ZEBOV) glycoprotein was selected for rapid safety and immunogenicity testing before its use in West Africa. METHODS: We performed three open-label, dose-escalation phase 1 trials and one randomized, double-blind, controlled phase 1 trial to assess the safety, side-effect profile, and immunogenicity of rVSV-ZEBOV at various doses in 158 healthy adults in Europe and Africa. All participants were injected with doses of vaccine ranging from 300,000 to 50 million plaque-forming units (PFU) or placebo. RESULTS: No serious vaccine-related adverse events were reported. Mild-to-moderate early-onset reactogenicity was frequent but transient (median, 1 day). Fever was observed in up to 30% of vaccinees. Vaccine viremia was detected within 3 days in 123 of the 130 participants (95%) receiving 3 million PFU or more; rVSV was not detected in saliva or urine. In the second week after injection, arthritis affecting one to four joints developed in 11 of 51 participants (22%) in Geneva, with pain lasting a median of 8 days (interquartile range, 4 to 87); 2 self-limited cases occurred in 60 participants (3%) in Hamburg, Germany, and Kilifi, Kenya. The virus was identified in one synovial-fluid aspirate and in skin vesicles of 2 other vaccinees, showing peripheral viral replication in the second week after immunization. ZEBOV-glycoprotein-specific antibody responses were detected in all the participants, with similar glycoprotein-binding antibody titers but significantly higher neutralizing antibody titers at higher doses. Glycoprotein-binding antibody titers were sustained through 180 days in all participants. CONCLUSIONS: In these studies, rVSV-ZEBOV was reactogenic but immunogenic after a single dose and warrants further evaluation for safety and efficacy. (Funded by the Wellcome Trust and others; ClinicalTrials.gov numbers, NCT02283099, NCT02287480, and NCT02296983; Pan African Clinical Trials Registry number, PACTR201411000919191.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anticuerpos Antivirales/sangre , Artritis/etiología , Dermatitis/etiología , Método Doble Ciego , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/aislamiento & purificación , Exantema/etiología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proteínas Recombinantes , Vesiculovirus , Viremia , Esparcimiento de Virus
9.
PLoS Pathog ; 9(12): e1003828, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348257

RESUMEN

Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8(+) T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming "nodular inflammatory foci" (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Pulmón/inmunología , Muromegalovirus/inmunología , Neumonía/inmunología , Neumonía/virología , Linfocitos T/inmunología , Animales , Animales Recién Nacidos , Presentación de Antígeno , Células Cultivadas , Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/virología , Intestinos/inmunología , Intestinos/patología , Intestinos/virología , Pulmón/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Muromegalovirus/crecimiento & desarrollo , Neumonía/patología
11.
J Immunol ; 182(8): 4633-40, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342638

RESUMEN

TGF-beta induces the conversion of CD4(+)CD25(-) T cells into CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg). Activin A is a pleiotropic TGF-beta family member and is expressed in response to inflammatory signals. In this study, we report on the effects of activin A on the conversion of CD4(+)CD25(-) T cells into Foxp3-expressing induced Treg (iTreg). Activin A was able to promote the conversion of CD4(+)CD25(-) T cells into iTreg in a dose-dependent manner in vitro. Activin A together with TGF-beta1 had synergistic effects on the rate of iTreg conversion in vitro. Intact TGF-beta1 signaling seemed to be essential for the effects of activin A on iTreg generation because cells overexpressing a dominant negative TGF-beta type II receptor could not be converted by activin A in vitro. In vivo, the frequency of peripheral, but not central, Treg was increased in transgenic mice with elevated activin A serum levels and the in vivo conversion rate of CD4(+)CD25(-) T cells into Foxp3-expressing iTreg was increased as compared with wild type mice. These data suggest a role for activin A as a promoter of the TGF-beta dependent conversion of CD4(+)CD25(-) T cells into iTreg in vitro and in vivo. Therefore, besides promoting inflammation, activin A may contribute to the regulation of inflammation via the expansion of peripheral Treg.


Asunto(s)
Activinas/farmacología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/inmunología , Factores de Transcripción Forkhead/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ratones , Ratones Transgénicos , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA